BOM-DAT/BOM-DAT.md
... ...
@@ -6,7 +6,7 @@ The common bom we hosted
6 6
7 7
## passive
8 8
9
-- [[diode-dat]]
9
+- [[diode-dat]] - [[mosfet-dat]] - [[tvs-dat]] - [[transistor-dat]]
10 10
11 11
## Chip
12 12
... ...
@@ -22,6 +22,8 @@ The common bom we hosted
22 22
23 23
- [[optocoupler-dat]]
24 24
25
+
26
+
25 27
## CONN
26 28
27 29
- [[DB9-dat]]
BOM-DAT/TVS-dat/TVS-dat.md
... ...
@@ -1,6 +1,29 @@
1 1
2 2
# TVS-dat
3 3
4
+## SMBJ5.0A
5
+
6
+Recommended SMBJ Model:
7
+For 5V systems, the SMBJ5.0A (or SMBJ5.0CA for bidirectional protection) is a suitable choice.
8
+
9
+Key Parameters of SMBJ5.0A:
10
+- Reverse Stand-off Voltage (π‘‰π‘…π‘Šπ‘€V​ ): 5.0V
11
+- Breakdown Voltage: 6.40V to 7.07V
12
+- Clamping Voltage: 9.2V (this is the maximum voltage the TVS diode will clamp to during a surge)
13
+- Peak Pulse Current: Can handle high current surges (typically in the range of 43.5A).
14
+
15
+Why Choose SMBJ5.0A:
16
+- It has a reverse standoff voltage of 5V, meaning it will not conduct under normal operating conditions of your 5V system.
17
+- It will clamp the voltage to 9.2V during overvoltage events, protecting your circuit from damage.
18
+- If your system is exposed to electrostatic discharge (ESD) or power surges, this diode will absorb the excess energy.
19
+- Alternative:
20
+- If you need bidirectional protection (e.g., for AC signals or where polarity can reverse), the SMBJ5.0CA (the bidirectional version) offers the same protection levels but in both polarities.
21
+
22
+Conclusion:
23
+- For protecting a 5V voltage line, SMBJ5.0A (unidirectional) or SMBJ5.0CA (bidirectional) would be the best choice, ensuring your 5V system is safeguarded from voltage spikes and surges.
24
+
25
+- SMA: DO-214AC
26
+
4 27
5 28
6 29
BOM-DAT/mosfet-dat/mosfet-dat.md
... ...
@@ -6,18 +6,21 @@
6 6
## model selections
7 7
8 8
9
-| Model | Mark | Manufactuers | | CH type | Descriptions |
10
-| -------- | ---- | ----------------- | -------- | ------- | ------------------------------------------- |
11
-| AOD403 | D403 | [[AOSMD-dat]] | | | |
12
-| AOD4184A | 4184 | [[AOSMD-dat]] | | N | 40V N-Channel MOSFET |
13
-| IRF540N | | [[[Infineon-dat]] | | | |
14
-| NCE6050 | | [[ncepower-dat]] | TO-252-2 | N | NCE N-Channel Enhancement Mode Power MOSFET |
15
-| AO3401 | A19T | [[AOSMD-dat]] | | | |
16
-| 2N7002 | 7002 | | | N | |
17
-| SI2301 | | | | | |
18
-| SI2307 | | | | | |
19
-| IRF5305 | 5305 | [[Infineon-dat]] | | |
20
-| IRFR1205 | | [[IOR-dat]] | | |
9
+| Model | Mark | Manufacturers | Id | Package | CH type | Descriptions |
10
+| -------- | ----- | ------------------ | ------- | -------- | ------- | ------------------------------------------- |
11
+| AOD403 | D403 | [[AOSMD-dat]] | 40A | TO-252 | N | 40V N-Channel MOSFET |
12
+| AOD4184A | 4184 | [[AOSMD-dat]] | 50A | TO-252 | N | 40V N-Channel MOSFET |
13
+| IRF540N | 540N | [[Infineon-dat]] | 33A | TO-220AB | N | 100V N-Channel MOSFET |
14
+| NCE6050 | | [[ncepower-dat]] | 50A | TO-252-2 | N | 60V N-Channel Enhancement Mode Power MOSFET |
15
+| AO3401 | A19T | [[AOSMD-dat]] | 4.3A | SOT-23 | P | 30V P-Channel MOSFET |
16
+| 2N7002 | 7002 | [[NXP-dat]] | 115mA | SOT-23 | N | 60V N-Channel MOSFET |
17
+| SI2300 | | [[Vishay-dat]] | 2.8A | SOT-23 | P | 20V P-Channel MOSFET |
18
+| SI2301 | | [[Vishay-dat]] | 2.8A | SOT-23 | P | 20V P-Channel MOSFET |
19
+| SI2302 | | [[Vishay-dat]] | 3.1A | SOT-23 | N | 20V N-Channel MOSFET |
20
+| SI2307 | | [[Vishay-dat]] | 3.7A | SOT-23 | N | 30V N-Channel MOSFET |
21
+| IRF5305 | 5305 | [[Infineon-dat]] | 31A | TO-220AB | P | 55V P-Channel MOSFET |
22
+| IRFR1205 | | [[Infineon-dat]] | 33A | D2PAK | N | 55V N-Channel MOSFET |
23
+
21 24
22 25
23 26
### dual channel
... ...
@@ -55,4 +58,6 @@ Because N-type transistors in general can carry more current than P-types, they
55 58
56 59
## ref
57 60
61
+- [[vishay-dat]]
62
+
58 63
- [[mosfet]]
... ...
\ No newline at end of file
BOM-DAT/transistor-dat/2024-10-06-16-36-27.png
... ...
Binary files /dev/null and b/BOM-DAT/transistor-dat/2024-10-06-16-36-27.png differ
BOM-DAT/transistor-dat/transistor-dat.md
... ...
@@ -1,12 +1,21 @@
1 1
2 2
# transistor-dat
3 3
4
+## types
5
+
6
+![](2024-10-06-16-36-27.png)
7
+
8
+- ref - https://www.censtry.com/blog/transistor-npn-vs-pnp-difference-between-pnp-and-npn-transistor.html
9
+
4 10
## common used
5 11
6 12
### S8050
7 13
8 14
- [[relay-dat]] drive
9 15
16
+
17
+- S8050 SOT-23 footprint = BC817
18
+
10 19
| pin | name | common |
11 20
| --- | --------- | -------- |
12 21
| 1 | base | io input |
... ...
@@ -16,4 +25,9 @@
16 25
![](2024-10-01-19-17-13.png)
17 26
18 27
19
-![](2024-10-01-19-17-24.png)
... ...
\ No newline at end of file
0
+![](2024-10-01-19-17-24.png)
1
+
2
+
3
+## ref
4
+
5
+- [[kicad-dat]]
... ...
\ No newline at end of file
Chip-dat/74xx-dat/74HC126-dat/2024-10-06-15-51-09.png
... ...
Binary files /dev/null and b/Chip-dat/74xx-dat/74HC126-dat/2024-10-06-15-51-09.png differ
Chip-dat/74xx-dat/74HC126-dat/74HC126-dat.md
... ...
@@ -5,4 +5,11 @@ PISO = 74HC165 = 0.04 - SOIC 16 - Package_SO:SOIC-16_3.9x9.9mm_P1.27mm - SOIC-16
5 5
6 6
QUADRUPLE 3-STATE BUFFERS OE HIGH
7 7
8
-![](2024-09-20-11-27-47.png)
... ...
\ No newline at end of file
0
+![](2024-09-20-11-27-47.png)
1
+
2
+
3
+## power consumption
4
+
5
++5V, 8x chips maximally usage:
6
+
7
+![](2024-10-06-15-51-09.png)
... ...
\ No newline at end of file
Chip-dat/74xx-dat/74HC595-dat/2024-10-06-15-48-08.png
... ...
Binary files /dev/null and b/Chip-dat/74xx-dat/74HC595-dat/2024-10-06-15-48-08.png differ
Chip-dat/74xx-dat/74HC595-dat/2024-10-06-16-14-51.png
... ...
Binary files /dev/null and b/Chip-dat/74xx-dat/74HC595-dat/2024-10-06-16-14-51.png differ
Chip-dat/74xx-dat/74HC595-dat/74HC595-dat.md
... ...
@@ -9,6 +9,8 @@
9 9
10 10
![](2024-09-30-18-08-46.png)
11 11
12
+![](2024-10-06-16-14-51.png)
13
+
12 14
## Drive the 7-segment led display
13 15
14 16
![](2024-02-28-14-42-59.png)
... ...
@@ -79,6 +81,8 @@ The 74LV595 is a low-voltage CMOS version of the 74HC595, and it can indeed save
79 81
- For both chips, dynamic power consumption depends on the switching frequency, load capacitance, and operating voltage.
80 82
74LV595 consumes less dynamic power compared to 74HC595 because lower operating voltage results in reduced power dissipation during switching.
81 83
84
+## Power usage
85
+
82 86
### Power Savings Estimate:
83 87
84 88
If you're operating at 3.3V or lower:
... ...
@@ -86,6 +90,15 @@ If you're operating at 3.3V or lower:
86 90
- 74LV595 will consume significantly less power. For example, at 3.3V, the power consumption can be 5 to 10 times lower compared to 74HC595 at 5V.
87 91
- If your system can operate at 3.3V or less, switching to 74LV595 can provide substantial power savings, both in terms of static and dynamic power consumption. The exact savings depend on your operating voltage and switching frequency, but a reduction in quiescent current from 80 Β΅A to 1-4 Β΅A gives you a good idea of the potential savings.
88 92
93
+### calculations
94
+
95
+![](2024-10-06-15-48-08.png)
96
+
97
+### Current explanation
98
+
99
+- Output Clamping Current (𝐼𝑂(π‘π‘™π‘Žπ‘šπ‘)): Current that flows through internal protection diodes when the output voltage exceeds limits (e.g., overvoltage).
100
+- Output Current (𝐼𝑂): The current the chip can source or sink on the output pins.
101
+- Supply Current (𝐼𝐢𝐢): The total current the chip draws from the power supply, including both idle and switching power consumption.
89 102
90 103
91 104
## code
... ...
@@ -102,8 +115,10 @@ If you're operating at 3.3V or lower:
102 115
103 116
## ref
104 117
105
-- [[74xx-dat]]
118
+- [[74xx-dat]] - [[74HC126-dat]]
106 119
107 120
- [[RPI-dat]] - [[rpi-python-dat]]
108 121
122
+
123
+
109 124
- [[74HC595]]
... ...
\ No newline at end of file
Tech-dat/EDA-dat/kicad-dat/kidcad-workflow-dat/2024-10-06-16-39-37.png
... ...
Binary files /dev/null and b/Tech-dat/EDA-dat/kicad-dat/kidcad-workflow-dat/2024-10-06-16-39-37.png differ
Tech-dat/EDA-dat/kicad-dat/kidcad-workflow-dat/kidcad-workflow-dat.md
... ...
@@ -6,14 +6,23 @@
6 6
- add symbols and assign footprint
7 7
- enter "E" for properties, and assign the footprint
8 8
9
-## workflow
10 9
10
+## workflow SCH
11 11
12
+### add symbol
13
+
14
+- search based on components type and footprint
15
+
16
+![](2024-10-06-16-39-37.png)
17
+
18
+## workflow PCB
12 19
13 20
### assign the footprints
14 21
15 22
![](2024-09-18-01-41-13.png)
16 23
24
+
25
+
17 26
### update into PCB
18 27
19 28
- switch to PCB
... ...
@@ -26,6 +35,9 @@
26 35
27 36
![](2024-09-18-01-43-55.png)
28 37
38
+
39
+
40
+
29 41
## PCB layout
30 42
31 43
- autoroute - by [[kicad-plugin-dat]]
Tech-dat/SBC-dat/RPI-dat/RPI-dat.md
... ...
@@ -12,6 +12,18 @@
12 12
13 13
- [[RPI-OS-dat]]
14 14
15
+
16
+### power delivery
17
+
18
+In summary, the Raspberry Pi 3 can deliver a maximum of 50 mA to 150 mA from the 3.3V GPIO pins, but care should be taken not to exceed the individual pin limit of 16 mA for each GPIO pin. Always ensure that the total current drawn does not exceed the recommended limits to avoid damaging the board.
19
+
20
+## 3.3V power delivery
21
+
22
+All Raspberry Pi since the Model B+ can provide quite a bit more, up to 500mA to remain on the safe side, thanks to a switching regulator.
23
+
24
+- ref - https://pinout.xyz/pinout/pin1_3v3_power/#:~:text=The%203v3%20supply%20pin%20on,regulator%20for%203.3v%20projects.
25
+
26
+
15 27
## Shields
16 28
17 29
- [[MPC1029-dat]]
Tech-dat/power-dat/power-dat.md
... ...
@@ -7,6 +7,7 @@
7 7
8 8
2. [[power-protection-dat]]
9 9
10
+
10 11
## Info
11 12
12 13
- [[breadboard-power-dat]]