
PR
EL
IM
IN
AR
Y

ESP8684
Technical Reference Manual

Pre-release v0.3

Espressif Systems

Copyright © 2022

www.espressif.com

About this Document

The ESP8684 is targeted at developers working on low level software projects that use the ESP8684 SoC and

other products in ESP32-C2 series. It describes the hardware modules listed below for the ESP8684 SoC and

other products in ESP32-C2 series. The modules detailed in this document provide an overview, list of features,

hardware architecture details, any necessary programming procedures, as well as register descriptions.

Navigation in This Document

Here are some tips on navigation through this extensive document:

• Release Status at a Glance on the very next page is a minimal list of all chapters from where you can

directly jump to a specific chapter.

• Use the Bookmarks on the side bar to jump to any specific chapters or sections from anywhere in the

document. Note this PDF document is configured to automatically display Bookmarks when open, which

is necessary for an extensive document like this one. However, some PDF viewers or browsers ignore this

setting, so if you don’t see the Bookmarks by default, try one or more of the following methods:

– Install a PDF Reader Extension for your browser;

– Download this document, and view it with your local PDF viewer;

– Set your PDF viewer to always automatically display the Bookmarks on the left side bar when open.

• Use the native Navigation function of your PDF viewer to navigate through the documents. Most PDF

viewers support to go Up, Down, Previous, Next, Back, Forward and Page with buttons, menu or hot

keys.

• You can also use the built-in GoBack button on the upper right corner on each and every page to go back

to the previous place before you click a link within the document. Note this feature may only work with

some Acrobat-specific PDF viewers (for example, Acrobat Reader and Adobe DC) and browsers with

built-in Acrobat-specific PDF viewers or extensions (for example, Firefox).

https://www.espressif.com/en/products/socs

PRELIMINARY

Release Status at a Glance

Note that this manual in still work in progress. See our release progress below:

No. ESP8684 Chapters Progress

1 ESP-RISC-V CPU (ESP-RV) Published

2 GDMA Controller (GDMA) Published

3 System and Memory (SYS_MEM) Published

4 eFuse Controller (eFuse) Published

5 IO MUX and GPIO Matrix (GPIO, IO_MUX) Published

6 Reset and Clock (CLKRST) Published

7 Chip Boot Control (BOOTCTRL) Published

8 Interrupt Matrix (INTERRUPT) Published

9 Low-Power Management (RTC_CNTL) Published

10 System Timer (SYSTIMER) Published

11 Timer Group (TIMG) Published

12 Watchdog Timers (WDT) Published

13 System Registers (SYSREG) Published

14 Debug Assist (ASSIST_DEBUG) Published

15 ECC Accelerator (ECC) Published

16 SHA Accelerator (SHA) Published

17 External Memory Encryption and Decryption (XTS_AES) Published

18 Random Number Generator (RNG) Published

19 Clock Glitch Detection (CLK_GLITCH) 0%

20 UART Controller (UART) Published

21 SPI Controller (SPI) Published

22 I2C Controller (I2C) Published

23 LED PWM Controller (LEDC) Published

24 On-Chip Sensors and Analog Signal Processing Published

Note:

Check the link or the QR code to make sure that you use the latest version of this document:

https://www.espressif.com/documentation/esp8684_technical_reference_manual_en.pdf

https://www.espressif.com/documentation/esp8684_technical_reference_manual_en.pdf

PRELIMINARY

Contents GoBack

Contents

1 ESP­RISC­V CPU 19

1.1 Overview 19

1.2 Features 19

1.3 Address Map 20

1.4 Configuration and Status Registers (CSRs) 20

1.4.1 Register Summary 20

1.4.2 Register Description 22

1.5 Interrupt Controller 30

1.5.1 Features 30

1.5.2 Functional Description 30

1.5.3 Suggested Operation 32

1.5.3.1 Latency Aspects 32

1.5.3.2 Configuration Procedure 32

1.5.4 Register Summary 33

1.5.5 Register Description 34

1.6 Debug 35

1.6.1 Overview 35

1.6.2 Features 36

1.6.3 Functional Description 36

1.6.4 Register Summary 36

1.6.5 Register Description 36

1.7 Hardware Trigger 39

1.7.1 Features 39

1.7.2 Functional Description 39

1.7.3 Trigger Execution Flow 40

1.7.4 Register Summary 40

1.7.5 Register Description 41

1.8 Memory Protection 45

1.8.1 Overview 45

1.8.2 Features 45

1.8.3 Functional Description 45

1.8.4 Register Summary 45

1.8.5 Register Description 47

2 GDMA Controller (GDMA) 48

2.1 Overview 48

2.2 Features 48

2.3 Architecture 48

2.4 Functional Description 49

2.4.1 Data Transfer Between Peripheral and Memory 49

2.4.2 Memory-to-Memory Data Transfer 50

2.4.3 Linked List 50

Espressif Systems 4
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

2.4.4 Enabling GDMA 51

2.4.5 Linked List Reading Process 52

2.4.6 EOF 53

2.4.7 Accessing Internal RAM 53

2.4.8 Arbitration 54

2.5 GDMA Interrupts 54

2.6 Programming Procedures 54

2.6.1 Programming Procedure for GDMA Clock and Reset 54

2.6.2 Programming Procedure for GDMA’s Transmit Channel 55

2.6.3 Programming Procedure for GDMA’s Receive Channel 55

2.6.4 Programming Procedure for Memory-to-Memory Transfer 55

2.7 Register Summary 57

2.8 Registers 59

3 System and Memory 77

3.1 Overview 77

3.2 Features 77

3.3 Functional Description 78

3.3.1 Address Mapping 78

3.3.2 Internal Memory 79

3.3.3 External Memory 80

3.3.3.1 External Memory Address Mapping 80

3.3.3.2 Cache 80

3.3.3.3 Cache Operations 81

3.3.4 GDMA Address Space 82

3.3.5 Modules/Peripherals 82

3.3.5.1 Module/Peripheral Address Mapping 82

4 eFuse Controller (eFuse) 84

4.1 Overview 84

4.2 Features 84

4.3 Functional Description 84

4.3.1 Structure 84

4.3.1.1 EFUSE_WR_DIS 87

4.3.1.2 EFUSE_RD_DIS 87

4.3.1.3 Data Storage 87

4.3.2 Programming of Parameters 88

4.3.3 User Read of Parameters 90

4.3.4 eFuse VDDQ Timing 91

4.3.5 Parameters Used by Hardware Modules 91

4.3.6 Interrupts 92

4.4 Register Summary 93

4.5 Registers 95

5 IO MUX and GPIO Matrix (GPIO, IO MUX) 113

5.1 Overview 113

Espressif Systems 5
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

5.2 Features 113

5.3 Architectural Overview 113

5.4 Peripheral Input via GPIO Matrix 115

5.4.1 Overview 115

5.4.2 Signal Synchronization 115

5.4.3 Functional Description 116

5.4.4 Simple GPIO Input 117

5.5 Peripheral Output via GPIO Matrix 118

5.5.1 Overview 118

5.5.2 Functional Description 118

5.5.3 Simple GPIO Output 119

5.6 Direct Input and Output via IO MUX 119

5.6.1 Overview 119

5.6.2 Functional Description 119

5.7 Analog Functions of GPIO Pins 120

5.8 Pin Functions in Light-sleep 120

5.9 Pin Hold Feature 120

5.10 Power Supplies and Management of GPIO Pins 121

5.10.1 Power Supplies of GPIO Pins 121

5.10.2 Power Supply Management 121

5.11 Peripheral Signal List 121

5.12 IO MUX Functions List 127

5.13 Analog Functions List 128

5.14 Register Summary 128

5.14.1 GPIO Matrix Register Summary 128

5.14.2 IO MUX Register Summary 130

5.15 Registers 131

5.15.1 GPIO Matrix Registers 131

5.15.2 IO MUX Registers 138

6 Reset and Clock 141

6.1 Reset 141

6.1.1 Overview 141

6.1.2 Architectural Overview 141

6.1.3 Features 141

6.1.4 Functional Description 142

6.2 Clock 142

6.2.1 Overview 142

6.2.2 Architectural Overview 143

6.2.3 Features 143

6.2.4 Functional Description 144

6.2.4.1 CPU Clock 144

6.2.4.2 Peripheral Clock 144

6.2.4.3 Wireless Clock 146

6.2.4.4 RTC Clock 147

Espressif Systems 6
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

7 Chip Boot Control 148

7.1 Overview 148

7.2 Features 148

7.3 Functional Description 148

7.3.1 Default Configuration 148

7.3.2 Boot Mode Control 149

7.3.3 ROM Code Printing Control 151

8 Interrupt Matrix (INTMTRX) 152

8.1 Overview 152

8.2 Features 152

8.3 Functional Description 152

8.3.1 Peripheral Interrupt Sources 153

8.3.2 CPU Interrupts 156

8.3.3 Allocate Peripheral Interrupt Source to CPU Interrupt 156

8.3.3.1 Allocate one peripheral interrupt source (Source_X) to CPU 156

8.3.3.2 Allocate multiple peripheral interrupt sources (Source_Xn) to CPU 156

8.3.3.3 Disable CPU peripheral interrupt source (Source_X) 156

8.3.4 Query Current Interrupt Status of Peripheral Interrupt Source 156

8.4 Register Summary 157

8.5 Registers 160

9 Low­power Management (RTC_CNTL) 165

9.1 Introduction 165

9.2 Features 165

9.3 Functional Description 165

9.3.1 Power Management Unit (PMU) 167

9.3.2 Low-Power Clocks 168

9.3.3 Timers 168

9.3.4 Voltage Regulators 169

9.3.4.1 Digital System Voltage Regulator 169

9.3.4.2 Low-power Voltage Regulator 170

9.4 Brownout Detector 170

9.5 Power Modes Management 172

9.5.1 Power Domains 172

9.5.2 Pre-defined Power Modes 172

9.5.3 Wakeup Sources 173

9.5.4 Reject Sleep 174

9.6 Register Summary 175

9.7 Registers 177

10 System Timer (SYSTIMER) 208

10.1 Overview 208

10.2 Features 208

10.3 Clock Source Selection 209

10.4 Functional Description 209

Espressif Systems 7
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

10.4.1 Counter 209

10.4.2 Comparator and Alarm 210

10.4.3 Synchronization Operation 211

10.4.4 Interrupt 211

10.5 Programming Procedure 211

10.5.1 Read Current Count Value 211

10.5.2 Configure One-Time Alarm in Target Mode 212

10.5.3 Configure Periodic Alarms in Period Mode 212

10.5.4 Update After Deep-sleep and Light-sleep 212

10.6 Register Summary 213

10.7 Registers 215

11 Timer Group (TIMG) 226

11.1 Overview 226

11.2 Features 226

11.3 Functional Description 227

11.3.1 16-bit Prescaler and Clock Selection 227

11.3.2 54-bit Time-base Counter 227

11.3.3 Alarm Generation 228

11.3.4 Timer Reload 229

11.3.5 SLOW_CLK Frequency Calculation 229

11.3.6 Interrupts 229

11.4 Configuration and Usage 230

11.4.1 Timer as a Simple Clock 230

11.4.2 Timer as One-shot Alarm 230

11.4.3 Timer as Periodic Alarm 231

11.4.4 SLOW_CLK Frequency Calculation 231

11.5 Register Summary 232

11.6 Registers 233

12 Watchdog Timers (WDT) 243

12.1 Overview 243

12.2 Digital Watchdog Timers 244

12.2.1 Features 244

12.2.2 Functional Description 244

12.2.2.1 Clock Source and 32-Bit Counter 245

12.2.2.2 Stages and Timeout Actions 245

12.2.2.3 Write Protection 246

12.2.2.4 Flash Boot Protection 246

12.3 Super Watchdog 246

12.3.1 Features 247

12.3.2 Super Watchdog Controller 247

12.3.2.1 Structure 247

12.3.2.2 Workflow 247

12.4 Interrupts 248

12.5 Registers 248

Espressif Systems 8
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

13 System Registers (SYSTEM) 249

13.1 Overview 249

13.2 Features 249

13.3 Function Description 249

13.3.1 System and Memory Registers 249

13.3.1.1 Internal Memory 249

13.3.1.2 External Memory 250

13.3.2 Clock Registers 250

13.3.3 Interrupt Signal Registers 250

13.3.4 Peripheral Clock Gating and Reset Registers 251

13.4 Register Summary 253

13.5 Registers 254

14 Debug Assistant (ASSIST_DEBUG) 263

14.1 Overview 263

14.2 Features 263

14.3 Functional Description 263

14.3.1 SP Monitoring 263

14.3.2 PC Logging 263

14.3.3 CPU Debugging Status Logging 263

14.4 Recommended Operation 263

14.4.1 SP Monitoring 263

14.4.2 PC Logging Configuration Process 264

14.5 Register Summary 265

14.6 Registers 266

15 ECC Hardware Accelerator (ECC) 272

15.1 Introduction 272

15.2 Features 272

15.3 Terminology 272

15.3.1 ECC Basics 272

15.3.1.1 Elliptic Curve and Points on the Curves 272

15.3.1.2 Affine Coordinates and Jacobian Coordinates 272

15.3.2 ECC Definitions 273

15.3.2.1 Memory Blocks 273

15.3.2.2 Data and Data Block 273

15.3.2.3 Write Data 273

15.3.2.4 Read Data 274

15.3.2.5 Standard Calculation and Jacobian Calculation 274

15.4 Function Description 274

15.4.1 Key Size 274

15.4.2 Working Modes 274

15.4.2.1 Base Point Multiplication (Point Multi Mode) 275

15.4.2.2 Finite Field Division (Division Mode) 275

15.4.2.3 Base Point Verification (Point Verif Mode) 275

15.4.2.4 Base Point Verification + Base Point Multiplication (Point Verif + Multi Mode) 275

Espressif Systems 9
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

15.4.2.5 Jacobian Point Multiplication (Jacobian Point Multi Mode) 276

15.4.2.6 Jacobian Point Verification (Jacobian Point Verif Mode) 276

15.4.2.7 Base Point Verification + Jacobian Point Multiplication (Point Verif + Jacobian Point

Multi Mode) 276

15.5 Clocks and Resets 276

15.6 Interrupts 277

15.7 Programming Procedures 277

15.8 Register Summary 278

15.9 Registers 279

16 SHA Accelerator (SHA) 281

16.1 Introduction 281

16.2 Features 281

16.3 Working Modes 281

16.4 Function Description 282

16.4.1 Preprocessing 282

16.4.1.1 Padding the Message 282

16.4.1.2 Parsing the Message 282

16.4.1.3 Setting the Initial Hash Value 283

16.4.2 Hash Operation 283

16.4.2.1 Typical SHA Mode Process 283

16.4.2.2 DMA-SHA Mode Process 284

16.4.3 Message Digest 285

16.4.4 Interrupt 285

16.5 Register Summary 286

16.6 Registers 287

17 External Memory Encryption and Decryption (XTS_AES)291
17.1 Overview 291

17.2 Features 291

17.3 Module Structure 291

17.4 Functional Description 292

17.4.1 XTS Algorithm 292

17.4.2 Key 292

17.4.3 Target Memory Space 292

17.4.4 Data Writing 293

17.4.5 Manual Encryption Block 294

17.4.6 Auto Decryption Block 294

17.5 Software Process 295

17.6 Register Summary 296

17.7 Registers 297

18 Random Number Generator (RNG) 300

18.1 Introduction 300

18.2 Features 300

18.3 Functional Description 300

Espressif Systems 10
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

18.4 Programming Procedure 300

18.5 Register Summary 301

18.6 Register 301

19 UART Controller (UART) 302

19.1 Overview 302

19.2 Features 302

19.3 UART Architecture 303

19.4 Functional Description 304

19.4.1 Clock and Reset 304

19.4.2 UART RAM 305

19.4.3 Baud Rate Generation and Detection 306

19.4.3.1 Baud Rate Generation 306

19.4.3.2 Baud Rate Detection 307

19.4.4 UART Data Frame 308

19.4.5 RS485 309

19.4.5.1 Driver Control 309

19.4.5.2 Turnaround Delay 309

19.4.5.3 Bus Snooping 310

19.4.6 IrDA 310

19.4.7 Wake-up 311

19.4.8 Flow Control 311

19.4.8.1 Hardware Flow Control 312

19.4.8.2 Software Flow Control 313

19.4.9 UART Interrupts 313

19.5 Programming Procedures 314

19.5.1 Register Type 314

19.5.1.1 Synchronous Registers 314

19.5.1.2 Static Registers 315

19.5.1.3 Immediate Registers 316

19.5.2 Detailed Steps 316

19.5.2.1 Initializing UARTn 317

19.5.2.2 Configuring UARTn Communication 318

19.5.2.3 Enabling UARTn 318

19.6 Register Summary 319

19.7 Registers 321

20 SPI Controller (SPI) 341

20.1 Overview 341

20.2 Glossary 341

20.3 Features 342

20.4 Architectural Overview 343

20.5 Functional Description 343

20.5.1 Data Modes 343

20.5.2 Introduction to FSPI Bus Signals 344

20.5.3 Bit Read/Write Order Control 346

Espressif Systems 11
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

20.5.4 Transfer Modes 348

20.5.5 CPU-Controlled Data Transfer 348

20.5.5.1 CPU-Controlled Master Mode 348

20.5.5.2 CPU-Controlled Slave Mode 350

20.5.6 DMA-Controlled Data Transfer 351

20.5.6.1 GDMA Configuration 351

20.5.6.2 GDMA TX/RX Buffer Length Control 352

20.5.7 Data Flow Control in GP-SPI2 Master and Slave Modes 353

20.5.7.1 GP-SPI2 Functional Blocks 353

20.5.7.2 Data Flow Control in Master Mode 354

20.5.7.3 Data Flow Control in Slave Mode 354

20.5.8 GP-SPI2 Works as a Master 355

20.5.8.1 State Machine 356

20.5.8.2 Register Configuration for State and Bit Mode Control 358

20.5.8.3 Full-Duplex Communication (1-bit Mode Only) 361

20.5.8.4 Half-Duplex Communication (1/2/4-bit Mode) 362

20.5.8.5 DMA-Controlled Configurable Segmented Transfer 364

20.5.9 GP-SPI2 Works as a Slave 367

20.5.9.1 Communication Formats 367

20.5.9.2 Supported CMD Values in Half-Duplex Communication 368

20.5.9.3 Slave Single Transfer and Slave Segmented Transfer 371

20.5.9.4 Configuration of Slave Single Transfer 371

20.5.9.5 Configuration of Slave Segmented Transfer in Half-Duplex 372

20.5.9.6 Configuration of Slave Segmented Transfer in Full-Duplex 373

20.6 CS Setup Time and Hold Time Control 373

20.7 GP-SPI2 Clock Control 374

20.7.1 Clock Phase and Polarity 375

20.7.2 Clock Control in Master Mode 376

20.7.3 Clock Control in Slave Mode 377

20.8 GP-SPI2 Timing Compensation 377

20.9 Interrupts 377

20.10 Register Summary 380

20.11 Registers 381

21 I2C Master Controller (I2C) 406

21.1 Overview 406

21.2 Features 406

21.3 I2C Architecture 407

21.4 Functional Description 408

21.4.1 Clock Configuration 408

21.4.2 SCL and SDA Noise Filtering 409

21.4.3 Generating SCL Pulses in Idle State 409

21.4.4 Synchronization 409

21.4.5 Open-Drain Output 410

21.4.6 Timing Parameter Configuration 411

21.4.7 Timeout Control 412

Espressif Systems 12
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

21.4.8 Command Configuration 412

21.4.9 TX/RX RAM Data Storage 413

21.4.10Data Conversion 414

21.4.11Addressing Mode 414

21.4.12Starting of the I2C Master Controller 415

21.5 Programming Example 415

21.5.1 I2Cmaster Writes to I2Cslave with a 7-bit Address in One Command Sequence 415

21.5.1.1 Introduction 415

21.5.1.2 Configuration Example 416

21.5.2 I2Cmaster Writes to I2Cslave with a 10-bit Address in One Command Sequence 417

21.5.2.1 Introduction 417

21.5.2.2 Configuration Example 417

21.5.3 I2Cmaster Writes to I2Cslave with Two 7-bit Addresses in One Command Sequence 419

21.5.3.1 Introduction 419

21.5.3.2 Configuration Example 419

21.5.4 I2Cmaster Writes to I2Cslave with a 7-bit Address in Multiple Command Sequences 421

21.5.4.1 Introduction 421

21.5.4.2 Configuration Example 422

21.5.5 I2Cmaster Reads I2Cslave with a 7-bit Address in One Command Sequence 423

21.5.5.1 Introduction 423

21.5.5.2 Configuration Example 424

21.5.6 I2Cmaster Reads I2Cslave with a 10-bit Address in One Command Sequence 424

21.5.6.1 Introduction 425

21.5.6.2 Configuration Example 425

21.5.7 I2Cmaster Reads I2Cslave with Two 7-bit Addresses in One Command Sequence 427

21.5.7.1 Introduction 427

21.5.7.2 Configuration Example 427

21.5.8 I2Cmaster Reads I2Cslave with a 7-bit Address in Multiple Command Sequences 429

21.5.8.1 Introduction 429

21.5.8.2 Configuration Example 430

21.6 Interrupts 431

21.7 Register Summary 433

21.8 Registers 435

22 LED PWM Controller (LEDC) 454

22.1 Overview 454

22.2 Features 454

22.3 Functional Description 455

22.3.1 Architecture 455

22.3.2 Timers 455

22.3.2.1 Clock Source 455

22.3.2.2 Clock Divider Configuration 456

22.3.2.3 14-bit Counter 457

22.3.3 PWM Generators 457

22.3.4 Duty Cycle Fading 459

22.3.5 Interrupts 459

Espressif Systems 13
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Contents GoBack

22.4 Register Summary 460

22.5 Registers 462

23 On­Chip Sensor and Analog Signal Processing 469

23.1 Overview 469

23.2 SAR ADC 469

23.2.1 Overview 469

23.2.2 Features 469

23.2.3 Functional Description 469

23.2.3.1 Input Signals 470

23.2.3.2 ADC Conversion and Attenuation 471

23.2.3.3 DIG ADC Controller 471

23.2.3.4 DIG ADC Clock 472

23.2.3.5 DIG ADC FSM 472

23.2.3.6 ADC Filters 475

23.2.3.7 Threshold Monitoring 475

23.3 Temperature Sensor 475

23.3.1 Overview 475

23.3.2 Features 475

23.3.3 Functional Description 476

23.4 Interrupts 476

23.5 Register Summary 476

23.6 Register 477

24 Related Documentation and Resources 489

Glossary 490

Abbreviations for Peripherals 490

Abbreviations for Registers 490

Revision History 491

Espressif Systems 14
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

List of Tables GoBack

List of Tables

1-1 CPU Address Map 20

1-3 ID wise map of Interrupt Trap-Vector Addresses 31

1-5 NAPOT encoding for maddress 40

2-1 Selecting Peripherals via Register Configuration 50

2-2 Descriptor Field Alignment Requirements 53

3-1 Internal Memory Address Mapping 79

3-2 External Memory Address Mapping 80

3-3 Module/Peripheral Address Mapping 82

4-1 Parameters in BLOCK0 85

4-2 Parameters in BLOCK1 to BLOCK3 86

4-3 Registers information 90

4-4 Configuration of Default VDDQ Timing Parameters 91

5-1 Bits Used to Control IO MUX Functions in Light-sleep Mode 120

5-2 Peripheral Signals via GPIO Matrix 122

5-3 IO MUX Pin Functions 127

5-4 Analog Functions of IO MUX Pins 128

6-1 Reset Sources 142

6-2 CPU Clock Source 144

6-3 CPU Clock Frequency 144

6-4 Peripheral Clocks 145

6-5 APB_CLK Clock Frequency 146

6-6 CRYPTO_CLK Frequency 146

6-7 MSPI_CLK Frequency 146

7-1 Default Configuration of Strapping Pins 149

7-2 Boot Mode Control 149

7-3 ROM Code Printing Control 151

8-1 CPU Peripheral Interrupt Configuration/Status Registers and Peripheral Interrupt Sources 154

9-1 Low-power Clocks 168

9-2 The Triggering Conditions for the RTC Timer 168

9-3 Predefined Power Modes 172

9-4 Wakeup Source 173

9-5 Reject Source 174

10-1 UNITn Configuration Bits 210

10-2 Trigger Point 211

10-3 Synchronization Operation 211

11-1 Alarm Generation When Up-Down Counter Increments 228

11-2 Alarm Generation When Up-Down Counter Decrements 228

12-1 Timeout Actions 246

13-1 Memory Controlling Bit 250

13-2 Clock Gating and Reset Bits 251

15-1 ECC Accelerator Memory Blocks 273

15-2 Choose ECC Accelerator Key Size 274

15-3 ECC Accelerator’s Working Modes 275

Espressif Systems 15
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

List of Tables GoBack

16-1 SHA Accelerator Working Mode 281

16-2 SHA Hash Algorithm Selection 282

16-3 The Storage and Length of Message Digest from Different Algorithms 285

17-1 Key Generated Based on KeyA,KeyB 292

17-2 Mapping Between Offsets and Registers 293

19-1 UARTn Synchronous Registers 315

19-2 UARTn Static Registers 316

20-2 Data Modes Supported by GP-SPI2 343

20-3 Functional Description of FSPI Bus Signals 344

20-4 Signals Used in Various SPI Modes 345

20-5 Bit Order Control in GP-SPI2 Master and Slave Modes 347

20-6 Supported Transfers in Master and Slave Modes 348

20-7 Interrupt Trigger Condition on GP-SPI2 Data Transfer in Slave Mode 352

20-8 Registers Used for State Control in 1/2/4-bit Modes 358

20-8 Registers Used for State Control in 1/2/4-bit Modes 359

20-9 Sending Sequence of Command Value 360

20-10 Sending Sequence of Address Value 360

20-11 BM Table for CONF State 365

20-12 An Example of CONF bufferi in Segmenti 366

20-13 BM Bit Value v.s. Register to Be Updated in This Example 367

20-14 Supported CMD Values in SPI Mode 369

20-14 Supported CMD Values in SPI Mode 370

20-15 Supported CMD Values in QPI Mode 371

20-16 Clock Phase and Polarity Configuration in Master Mode 376

20-17 Clock Phase and Polarity Configuration in Slave Mode 377

20-18 GP-SPI2 Master Mode Interrupts 378

20-19 GP-SPI2 Slave Mode Interrupts 379

21-1 I2C Registers that Need Synchronization 409

23-1 SAR ADC Input Signals 471

23-2 Temperature Offset 476

Espressif Systems 16
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

List of Figures GoBack

List of Figures

1-1 CPU Block Diagram 19

1-2 Debug System Overview 35

2-1 Modules with GDMA Feature and GDMA Channels 48

2-2 GDMA Engine Architecture 49

2-3 Structure of a Linked List 50

2-4 Relationship among Linked Lists 52

3-1 System Structure and Address Mapping 78

3-2 Cache Structure 81

4-1 Shift Register Circuit (former 32-byte) 88

4-2 Shift Register Circuit (latter 12-byte) 88

5-1 Architecture of IO MUX and GPIO Matrix 114

5-2 Internal Structure of a Pad 115

5-3 GPIO Input Synchronized on APB Clock Rising Edge or on Falling Edge 116

5-4 Filter Timing of GPIO Input Signals 117

6-1 Reset Types 141

6-2 System Clock 143

7-1 Chip Boot Flow 150

8-1 Interrupt Matrix Structure 152

9-1 Low-power Management Schematics 166

9-2 Power Management Unit Workflow 167

9-3 RTC_SLOW_CLK and RTC_FAST_CLK 168

9-4 Digital System Regulator 170

9-5 Low-power voltage regulator 170

9-6 Brownout detector 171

9-7 Brownout handling 171

10-1 System Timer Structure 208

10-2 System Timer Alarm Generation 209

11-1 Timer Group Overview 226

11-2 Timer Group Architecture 227

12-1 Watchdog Timers Overview 243

12-2 Digital Watchdog Timers in ESP8684 244

12-3 Super Watchdog Controller Structure 247

17-1 Architecture of the External Memory Encryption and Decryption 291

18-1 Noise Source 300

19-1 UART Architecture Overview 303

19-2 UART Architecture 303

19-3 UART Controllers Sharing RAM 305

19-4 UART Controllers Division 307

19-5 The Timing Diagram of Weak UART Signals Along Falling Edges 307

19-6 Structure of UART Data Frame 308

19-7 AT_CMD Character Structure 308

19-8 Driver Control Diagram in RS485 Mode 309

19-9 The Timing Diagram of Encoding and Decoding in SIR mode 310

Espressif Systems 17
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

List of Figures GoBack

19-10 IrDA Encoding and Decoding Diagram 311

19-11 Hardware Flow Control Diagram 312

19-12 Connection between Hardware Flow Control Signals 312

19-13 UART Programming Procedures 317

20-1 SPI Module Overview 343

20-2 Data Buffer Used in CPU-Controlled Transfer 348

20-3 GP-SPI2 Block Diagram 353

20-4 Data Flow Control in GP-SPI2 Master Mode 354

20-5 Data Flow Control in GP-SPI2 Slave Mode 354

20-6 GP-SPI2 State Machine in Master Mode 357

20-7 Full-Duplex Communication Between GP-SPI2 Master and a Slave 361

20-8 Connection of GP-SPI2 to Flash and External RAM in 4-bit Mode 363

20-9 SPI Quad I/O Read Command Sequence Sent by GP-SPI2 to Flash 363

20-10 Configurable Segmented Transfer in DMA-Controlled Master Mode 364

20-11 Recommended CS Timing and Settings When Accessing External RAM 374

20-12 Recommended CS Timing and Settings When Accessing Flash 374

20-13 SPI Clock Mode 0 or 2 375

20-14 SPI Clock Mode 1 or 3 376

21-1 I2C Master Architecture 407

21-2 I2C Protocol Timing (Cited from Fig. 31 in The I2C-bus specification Version 2.1) 408

21-3 I2C Timing Parameters (Cited from Table 5 in The I2C-bus specification Version 2.1) 408

21-4 I2C Timing Diagram 411

21-5 Structure of I2C Command Registers 412

21-6 I2Cmaster Writing to I2Cslave with a 7-bit Address 415

21-7 I2Cmaster Writing to a Slave with a 10-bit Address 417

21-8 I2Cmaster Writing to I2Cslave with Two 7-bit Addresses 419

21-9 I2Cmaster Writing to I2Cslave with a 7-bit Address in Multiple Sequences 421

21-10 I2Cmaster Reading I2Cslave with a 7-bit Address 423

21-11 I2Cmaster Reading I2Cslave with a 10-bit Address 425

21-12 I2Cmaster Reading N Bytes of Data from addrM of I2Cslave with a 7-bit Address 427

21-13 I2Cmaster Reading I2Cslave with a 7-bit Address in Segments 429

22-1 LED PWM Architecture 454

22-2 LED PWM Generator Diagram 455

22-3 Frequency Division When LEDC_CLK_DIV_TIMERx is a Non-Integer Value 457

22-4 LED_PWM Output Signal Diagram 458

22-5 Output Signal Diagram of Fading Duty Cycle 459

23-1 SAR ADC Function Overview 470

23-2 Diagram of DIG ADC FSM 472

23-3 APB_SARADC_SAR_PATT_TAB1_REG and Pattern Table Entry 0 - Entry 3 473

23-4 APB_SARADC_SAR_PATT_TAB2_REG and Pattern Table Entry 4 - Entry 7 473

23-5 Pattern Table Entry 474

23-6 cmd0 Configuration 474

23-7 cmd1 Configuration 474

Espressif Systems 18
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1 ESP­RISC­V CPU

1.1 Overview

ESP-RISC-V CPU is a 32-bit core based upon RISC-V ISA comprising base integer (I), multiplication/division (M)

and compressed (C) standard extensions. The core has 4-stage, in-order, scalar pipeline optimized for area,

power and performance. CPU core complex has an interrupt-controller (INTC), debug module (DM) and system

bus (SYS BUS) interfaces for memory and peripheral access.

Figure 1­1. CPU Block Diagram

1.2 Features

The ESP-RISC-V CPU has the following features:

• Operating clock frequency up to 120 MHz

• Zero wait cycle access to on-chip SRAM and Cache for program and data access over IRAM/DRAM

interface

• Interrupt controller (INTC) with up to 31 vectored interrupts with programmable priority and threshold levels

• Debug module (DM) compliant with RISC-V debug specification v0.13 with external debugger support over

an industry-standard JTAG/USB port

• Debugger direct system bus access (SBA) to memory and peripherals

• Hardware trigger compliant to RISC-V debug specification v0.13 with up to 2 breakpoints/watchpoints

• Physical memory protection (PMP) for up to 16 regions

• 32-bit AHB system bus for peripheral access

Espressif Systems 19
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

• Configurable events for core performance metrics

1.3 Address Map

Below table shows address map of various regions accessible by CPU for instruction, data, system bus

peripheral and debug.

Table 1­1. CPU Address Map

Name Description Starting Address Ending Address Access

IRAM Instruction Address Map 0x4000_0000 0x47FF_FFFF R/W

DRAM Data Address Map 0x3800_0000 0x3FFF_FFFF R/W

DM Debug Address Map 0x2000_0000 0x27FF_FFFF R/W

AHB AHB Address Map *default *default R/W

*default : Address not matching any of the specified ranges (IRAM, DRAM, DM) are accessed using AHB

bus.

1.4 Configuration and Status Registers (CSRs)

1.4.1 Register Summary

Below is a list of CSRs available to the CPU. Except for the custom performance counter CSRs, all the

implemented CSRs follow the standard mapping of bit fields as described in the RISC-V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10. It must be noted that even among the standard CSRs, not all bit

fields have been implemented, limited by the subset of features implemented in the CPU. Refer to the next

section for detailed description of the subset of fields implemented under each of these CSRs.

Name Description Address Access

Machine Information CSRs

mvendorid Machine Vendor ID 0xF11 RO

marchid Machine Architecture ID 0xF12 RO

mimpid Machine Implementation ID 0xF13 RO

mhartid Machine Hart ID 0xF14 RO

Machine Trap Setup CSRs

mstatus Machine-Mode Status 0x300 R/W

misa 1 Machine ISA 0x301 R/W

mtvec 2 Machine Trap Vector 0x305 R/W

Machine Trap Handling CSRs

mscratch Machine Scratch 0x340 R/W

mepc Machine Trap Program Counter 0x341 R/W

mcause 3 Machine Trap Cause 0x342 R/W

mtval Machine Trap Value 0x343 R/W

1Although misa is specified as having both read and write access (R/W), its fields are hardwired and thus write has no effect. This is what

would be termed WARL (Write Any Read Legal) in RISC-V terminology
2mtvec only provides configuration for trap handling in vectored mode with the base address aligned to 256 bytes
3External interrupt IDs reflected in mcause include even those IDs which have been reserved by RISC-V standard for core internal sources.

Espressif Systems 20
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Name Description Address Access

Physical Memory Protection (PMP) CSRs

pmpcfg0 Physical memory protection configuration 0x3A0 R/W

pmpcfg1 Physical memory protection configuration 0x3A1 R/W

pmpcfg2 Physical memory protection configuration 0x3A2 R/W

pmpcfg3 Physical memory protection configuration 0x3A3 R/W

pmpaddr0 Physical memory protection address 0x3B0 R/W

pmpaddr1 Physical memory protection address 0x3B1 R/W

pmpaddr2 Physical memory protection address 0x3B2 R/W

pmpaddr3 Physical memory protection address 0x3B3 RO

pmpaddr4 Physical memory protection address 0x3B4 RO

pmpaddr5 Physical memory protection address 0x3B5 RO

pmpaddr6 Physical memory protection address 0x3B6 RO

pmpaddr7 Physical memory protection address 0x3B7 RO

pmpaddr8 Physical memory protection address 0x3B8 RO

pmpaddr9 Physical memory protection address 0x3B9 RO

pmpaddr10 Physical memory protection address 0x3BA RO

pmpaddr11 Physical memory protection address 0x3BB RO

pmpaddr12 Physical memory protection address 0x3BC RO

pmpaddr13 Physical memory protection address 0x3BD RO

pmpaddr14 Physical memory protection address 0x3BE RO

pmpaddr15 Physical memory protection address 0x3BF RO

Trigger Module CSRs (shared with Debug Mode)

tselect Trigger Select Register 0x7A0 R/W

tdata1 Trigger Abstract Data 1 0x7A1 R/W

tdata2 Trigger Abstract Data 2 0x7A2 R/W

tcontrol Global Trigger Control 0x7A5 R/W

Debug Mode CSRs

dcsr Debug Control and Status 0x7B0 R/W

dpc Debug PC 0x7B1 R/W

dscratch0 Debug Scratch Register 0 0x7B2 R/W

dscratch1 Debug Scratch Register 1 0x7B3 R/W

Performance Counter CSRs (Custom) 4

mpcer Machine Performance Counter Event 0x7E0 R/W

mpcmr Machine Performance Counter Mode 0x7E1 R/W

mpccr Machine Performance Counter Count 0x7E2 R/W

GPIO Access CSRs (Custom)

cpu_gpio_oen GPIO Output Enable 0x803 R/W

cpu_gpio_in GPIO Input Value 0x804 RO

cpu_gpio_out GPIO Output Value 0x805 R/W

Note that if write/set/clear operation is attempted on any of the CSRs which are read-only (RO), as indicated in

the above table, the CPU will generate illegal instruction exception.

4These custom CSRs have been implemented in the address space reserved by RISC-V standard for custom use

Espressif Systems 21
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1.4.2 Register Description

Register 1.1. mvendorid (0xF11)

M
VE
ND
OR
ID

0x00000612

31 0

Reset

MVENDORID Vendor ID. (RO)

Register 1.2. marchid (0xF12)

M
AR
CH
ID

0x80000001

31 0

Reset

MARCHID Architecture ID. (RO)

Register 1.3. mimpid (0xF13)

M
IM
PI
D

0x00000002

31 0

Reset

MIMPID Implementation ID. (RO)

Register 1.4. mhartid (0xF14)

M
HA
RT
ID

0x00000000

31 0

Reset

MHARTID Hart ID. (RO)

Espressif Systems 22
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.5. mstatus (0x300)

(re
se
rve
d)

0x000

31 22

TW

0

21

(re
se
rve
d)

0x00

20 13

M
PP

0x0

12 11

(re
se
rve
d)

0x0

10 8

M
PI
E

0

7

(re
se
rve
d)

0x0

6 4

M
IE

0

3

(re
se
rve
d)

0x0

2 0

Reset

MIE Global machine-mode interrupt enable. (R/W)

MPIE Previous MIE. (R/W)

MPP Machine previous privilege mode. (R/W)

Possible values:

• 0x0: User-mode
• 0x3: Machine-mode

Note: Only lower bit is writable. Write to the higher bit is ignored as it is directly tied to the lower bit.

TW Timeout wait. (R/W)

If this bit is set, executing WFI (Wait-for-Interrupt) instruction in User-mode will cause illegal instruc-

tion exception.

Espressif Systems 23
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.6. misa (0x301)

M
XL

0x1

31 30

(re
se
rve
d)

0x0

29 26

Z

0

25

Y

0

24

X

0

23

W

0

22

V

0

21

U

1

20

T

0

19

S

0

18

R

0

17

Q

0

16

P

0

15

O

0

14

N

0

13

M

1

12

L

0

11

K

0

10

J

0

9

I

1

8

H

0

7

G

0

6

F

0

5

E

0

4

D

0

3

C

1

2

B

0

1

A

0

0

Reset

MXL Machine XLEN = 1 (32-bit). (RO)

Z Reserved = 0. (RO)

Y Reserved = 0. (RO)

X Non-standard extensions present = 0. (RO)

W Reserved = 0. (RO)

V Reserved = 0. (RO)

U User-mode implemented = 1. (RO)

T Reserved = 0. (RO)

S Supervisor-mode implemented = 0. (RO)

R Reserved = 0. (RO)

Q Quad-precision floating-point extension = 0. (RO)

P Reserved = 0. (RO)

O Reserved = 0. (RO)

N User-level interrupts supported = 0. (RO)

M Integer Multiply/Divide extension = 1. (RO)

L Reserved = 0. (RO)

K Reserved = 0. (RO)

J Reserved = 0. (RO)

I RV32I base ISA = 1. (RO)

H Hypervisor extension = 0. (RO)

G Additional standard extensions present = 0. (RO)

F Single-precision floating-point extension = 0. (RO)

E RV32E base ISA = 0. (RO)

D Double-precision floating-point extension = 0. (RO)

C Compressed Extension = 1. (RO)

B Reserved = 0. (RO)

A Atomic Extension = 0. (RO)

Espressif Systems 24
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.7. mtvec (0x305)

BA
SE

0x000000

31 8

(re
se
rve
d)

0x00

7 2

M
OD
E

0x1

1 0

Reset

MODE Only vectored mode 0x1 is available. (RO)

BASE Higher 24 bits of trap vector base address aligned to 256 bytes. (R/W)

Register 1.8. mscratch (0x340)

M
SC
RA
TC
H

0x00000000

31 0

Reset

MSCRATCH Machine scratch register for custom use. (R/W)

Register 1.9. mepc (0x341)

M
EP
C

0x00000000

31 0

Reset

MEPC Machine trap/exception program counter. (R/W)

This is automatically updated with address of the instruction which was about to be executed while

CPU encountered the most recent trap.

Espressif Systems 25
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.10. mcause (0x342)

Int
er
ru
pt
Fla
g

0

31

(re
se
rve
d)

0x0000000

30 5

Ex
ce
pt
ion

Co
de

0x00

4 0

Reset

Exception Code This field is automatically updated with unique ID of the most recent exception or

interrupt due to which CPU entered trap. (R/W)

Possible exception IDs are:

• 0x1: PMP Instruction access fault
• 0x2: Illegal Instruction
• 0x3: Hardware Breakpoint/Watchpoint or EBREAK
• 0x5: PMP Load access fault
• 0x7: PMP Store access fault
• 0x8: ECALL from U mode
• 0xb: ECALL from M mode

Note: Exception ID 0x0 (instruction access misaligned) is not present because CPU always masks the

lowest bit of the address during instruction fetch.

Interrupt Flag This flag is automatically updated when CPU enters trap. (R/W)

If this is found to be set, indicates that the latest trap occurred due to interrupt. For exceptions it

remains unset.

Note: The interrupt controller is using up IDs in range 1-31 for all external interrupt sources. This is

different from the RISC-V standard which has reserved IDs in range 0-15 for core internal interrupt

sources.

Register 1.11. mtval (0x343)

M
TV
AL

0x00000000

31 0

Reset

MTVAL Machine trap value. (R/W)

This is automatically updated with an exception dependent data which may be useful for handling

that exception.

Data is to be interpreted depending upon exception IDs:

• 0x1: Faulting virtual address of instruction
• 0x2: Faulting instruction opcode
• 0x5: Faulting data address of load operation
• 0x7: Faulting data address of store operation

Note: The value of this register is not valid for other exception IDs and interrupts.

Espressif Systems 26
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.12. mpcer (0x7E0)

(re
se
rve
d)

0x000

31 11

IN
ST
_C
OM

P

0

10

(B
RA
NC
H_
TA
KE
N

0

9

BR
AN
CH

0

8

JM
P_
UN
CO
ND

0

7

ST
OR
E

0

6

LO
AD

0

5

ID
LE

0

4

JM
P_
HA
ZA
RD

0

3

LD
_H
AZ
AR
D

0

2

IN
ST

0

1

CY
CL
E

0

0

Reset

INST_COMP Count Compressed Instructions. (R/W)

BRANCH_TAKEN Count Branches Taken. (R/W)

BRANCH Count Branches. (R/W)

JMP_UNCOND Count Unconditional Jumps. (R/W)

STORE Count Stores. (R/W)

LOAD Count Loads. (R/W)

IDLE Count IDLE Cycles. (R/W)

JMP_HAZARD Count Jump Hazards. (R/W)

LD_HAZARD Count Load Hazards. (R/W)

INST Count Instructions. (R/W)

CYCLE Count Clock Cycles. (R/W)

Note: Each bit selects a specific event for counter to increment. If more than one event is selected

and occurs simultaneously, counter increments by one only.

Register 1.13. mpcmr (0x7E1)

(re
se
rve
d)

0

31 2

CO
UN
T_
SA
T

1

1

CO
UN
T_
EN

1

0

Reset

COUNT_SAT Counter Saturation Control. (R/W)

Possible values:

• 0: Overflow on maximum value
• 1: Halt on maximum value

COUNT_EN Counter Enable Control. (R/W)

Possible values:

• 0: Disabled
• 1: Enabled

Espressif Systems 27
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.14. mpccr (0x7E2)

M
PC
CR

0x00000000

31 0

Reset

MPCCR Machine Performance Counter Value. (R/W)

Register 1.15. cpu_gpio_oen (0x803)

(re
se
rve
d)

0

31 8

CP
U_
GP
IO
_O
EN
[7]

0

7

CP
U_
GP
IO
_O
EN
[6]

0

6

CP
U_
GP
IO
_O
EN
[5]

0

5

CP
U_
GP
IO
_O
EN
[4]

0

4

CP
U_
GP
IO
_O
EN
[3]

0

3

CP
U_
GP
IO
_O
EN
[2]

0

2

CP
U_
GP
IO
_O
EN
[1]

0

1

CP
U_
GP
IO
_O
EN
[0]

0

0

Reset

CPU_GPIO_OEN GPIOn (n=0 ~ 21) Output Enable. CPU_GPIO_OEN[7:0] correspond to out-

put enable signals cpu_gpio_out_oen[7:0] in Table 5-2 Peripheral Signals via GPIO Matrix.

CPU_GPIO_OEN value matches that of cpu_gpio_out_oen.

CPU_GPIO_OEN is the enable signal of CPU_GPIO_OUT. (R/W)

• 0: GPIO output disable
• 1: GPIO output enable

Register 1.16. cpu_gpio_in (0x804)

(re
se
rve
d)

0

31 8

CP
U_
GP
IO
_IN
[7]

0

7

CP
U_
GP
IO
_IN
[6]

0

6

CP
U_
GP
IO
_IN
[5]

0

5

CP
U_
GP
IO
_IN
[4]

0

4

CP
U_
GP
IO
_IN
[3]

0

3

CP
U_
GP
IO
_IN
[2]

0

2

CP
U_
GP
IO
_IN
[1]

0

1

CP
U_
GP
IO
_IN
[0]

0

0

Reset

CPU_GPIO_IN GPIOn (n=0 ~ 21) Input Value. It is a CPU CSR to read input value (1=high, 0=low)

from SoC GPIO pin.

CPU_GPIO_IN[7:0] correspond to input signals cpu_gpio_in[7:0] in Table 5-2 Peripheral Signals via

GPIO Matrix.

CPU_GPIO_IN[7:0] can only be mapped to GPIO pins through GPIO matrix. For details please

refer to Section 2 in Chapter IO MUX and GPIO Matrix (GPIO, IO MUX). (RO)

Espressif Systems 28
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.17. cpu_gpio_out (0x805)

(re
se
rve
d)

0

31 8

CP
U_
GP
IO
_O
UT
[7]

0

7

CP
U_
GP
IO
_O
UT
[6]

0

6

CP
U_
GP
IO
_O
UT
[5]

0

5

CP
U_
GP
IO
_O
UT
[4]

0

4

CP
U_
GP
IO
_O
UT
[3]

0

3

CP
U_
GP
IO
_O
UT
[2]

0

2

CP
U_
GP
IO
_O
UT
[1]

0

1

CP
U_
GP
IO
_O
UT
[0]

0

0

Reset

CPU_GPIO_OUT GPIOn (n=0 ~ 21) Output Value. It is a CPU CSR to write value (1=high, 0=low) to

SoC GPIO pin. The value takes effect only when CPU_GPIO_OEN is set.

CPU_GPIO_OUT[7:0] correspond to output signals cpu_gpio_out[7:0] in Table 5-2 Peripheral Sig-

nals via GPIO Matrix.

CPU_GPIO_OUT[7:0] can only be mapped to GPIO pins through GPIO matrix. For details please

refer to Section 2 in Chapter IO MUX and GPIO Matrix (GPIO, IO MUX). (R/W)

Espressif Systems 29
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1.5 Interrupt Controller

1.5.1 Features

The interrupt controller allows capturing, masking and dynamic prioritization of interrupt sources routed from

peripherals to the RISC-V CPU. It has the following features:

• Up to 31 asynchronous interrupts with unique IDs (1-31)

• Configurable via read/write to memory mapped registers

• 15 levels of priority, programmable for each interrupt

• Support for both level and edge type interrupt sources

• Programmable global threshold for masking interrupts with lower priority

• Interrupts IDs mapped to trap-vector address offsets

1.5.2 Functional Description

Each interrupt ID has 5 properties associated with it:

1. Enable State (0-1):

• Determines if an interrupt is enabled to be captured and serviced by the CPU.

• Programmed by writing the corresponding bit in INTERRUPT_CORE0_CPU_INT_ENABLE_REG.

2. Type (0-1):

• Enables latching the state of an interrupt signal on its rising edge.

• Programmed by writing the corresponding bit in INTERRUPT_CORE0_CPU_INT_TYPE_REG.

• An interrupt for which type is kept 0 is referred as a ’level’ type interrupt.

• An interrupt for which type is set to 1 is referred as an ’edge’ type interrupt.

3. Priority (1-15):

• Determines which interrupt, among multiple pending interrupts, the CPU will service first.

• Programmed by writing to the INTERRUPT_CORE0_CPU_INT_PRI_n_REG for a particular interrupt ID

n in range (1-31).

• Enabled interrupts with priorities zero or less than the threshold value in

INTERRUPT_CORE0_CPU_INT_THRESH_REG are masked.

• Priority levels increase from 1 (lowest) to 15 (highest).

• Interrupts with same priority are statically prioritized by their IDs, lowest ID having highest priority.

4. Pending State (0-1):

• Reflects the captured state of an enabled and unmasked interrupt signal.

• For each interrupt ID, the corresponding bit in read-only

INTERRUPT_CORE0_CPU_INT_EIP_STATUS_REG gives its pending state.

• A pending interrupt will cause CPU to enter trap if no other pending interrupt has higher priority.

Espressif Systems 30
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

• A pending interrupt is said to be ’claimed’ if it preempts the CPU and causes it to jump to the

corresponding trap vector address.

• All pending interrupts which are yet to be serviced are termed as ’unclaimed’.

5. Clear State (0-1):

• Toggling this will clear the pending state of claimed edge-type interrupts only.

• Toggled by first setting and then clearing the corresponding bit in

INTERRUPT_CORE0_CPU_INT_CLEAR_REG.

• Pending state of a level type interrupt is unaffected by this and must be cleared from source.

• Pending state of an unclaimed edge type interrupt can be flushed, if required, by first clearing the

corresponding bit in INTERRUPT_CORE0_CPU_INT_ENABLE_REG and then toggling same bit in

INTERRUPT_CORE0_CPU_INT_CLEAR_REG.

When CPU services a pending interrupt, it:

• saves the address of the current un-executed instruction in mepc for resuming execution later.

• updates the value of mcause with the ID of the interrupt being serviced.

• copies the state of MIE into MPIE, and subsequently clears MIE, thereby disabling interrupts globally.

• enters trap by jumping to a word-aligned offset of the address stored in mtvec.

Table 1-3 shows the mapping of each interrupt ID with the corresponding trap-vector address. In short, the word

aligned trap address for an interrupt with a certain ID = i can be calculated as (mtvec+ 4i).

Note: ID = 0 is unavailable and therefore cannot be used for capturing interrupts. This is because the

corresponding trap vector address (mtvec + 0x00) is reserved for exceptions.

Table 1­3. ID wise map of Interrupt Trap­Vector Addresses

ID Address ID Address ID Address ID Address

0 NA 8 mtvec + 0x20 16 mtvec + 0x40 24 mtvec + 0x60

1 mtvec + 0x04 9 mtvec + 0x24 17 mtvec + 0x44 25 mtvec + 0x64

2 mtvec + 0x08 10 mtvec + 0x28 18 mtvec + 0x48 26 mtvec + 0x68

3 mtvec + 0x0c 11 mtvec + 0x2c 19 mtvec + 0x4c 27 mtvec + 0x6c

4 mtvec + 0x10 12 mtvec + 0x30 20 mtvec + 0x50 28 mtvec + 0x70

5 mtvec + 0x14 13 mtvec + 0x34 21 mtvec + 0x54 29 mtvec + 0x74

6 mtvec + 0x18 14 mtvec + 0x38 22 mtvec + 0x58 30 mtvec + 0x78

7 mtvec + 0x1c 15 mtvec + 0x3c 23 mtvec + 0x5c 31 mtvec + 0x7c

After jumping to the trap-vector, the execution flow is dependent on software implementation, although it can be

presumed that the interrupt will get handled (and cleared) in some interrupt service routine (ISR) and later the

normal execution will resume once the CPU encounters MRET instruction.

Upon execution of MRET instruction, the CPU:

• copies the state of MPIE back into MIE, and subsequently clears MPIE. This means that if previously MPIE

was set, then, after MRET, MIE will be set, thereby enabling interrupts globally.

• jumps to the address stored in mepc and resumes execution.

Espressif Systems 31
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

It is possible to perform software assisted nesting of interrupts inside an ISR as explained in 1.5.3.

The below listed points outline the functional behavior of the controller:

• Only if an interrupt has non-zero priority, higher or equal to the value in the threshold register, will it be

reflected in INTERRUPT_CORE0_CPU_INT_EIP_STATUS_REG.

• If an interrupt is visible in INTERRUPT_CORE0_CPU_INT_EIP_STATUS_REG and has yet to be serviced,

then it’s possible to mask it (and thereby prevent the CPU from servicing it) by either lowering the value of

its priority or increasing the global threshold.

• If an interrupt, visible in INTERRUPT_CORE0_CPU_INT_EIP_STATUS_REG, is to be flushed (and prevented

from being serviced at all), then it must be disabled (and cleared if it is of edge type).

1.5.3 Suggested Operation

1.5.3.1 Latency Aspects

There is latency involved while configuring the Interrupt Controller.

In steady state operation, the Interrupt Controller has a fixed latency of 4 cycles. Steady state means that no

changes have been made to the Interrupt Controller registers recently. This implies that any interrupt that is

asserted to the controller will take exactly 4 cycles before the CPU starts processing the interrupt. This further

implies that CPU may execute up to 5 instructions before the preemption happens.

Whenever any of its registers are modified, the Interrupt Controller enters into transient state, which may take up

to 4 cycles for it to settle down into steady state again. During this transient state, the ordering of interrupts may

not be predictable, and therefore, a few safety measures need to be taken in software to avoid any

synchronization issues.

Also, it must be noted that the Interrupt Controller configuration registers lie in the APB address range, hence any

R/W access to these registers may take multiple cycles to complete.

In consideration of above mentioned characteristics, users are advised to follow the sequence described below,

whenever modifying any of the Interrupt Controller registers:

1. save the state of MIE and clear MIE to 0

2. read-modify-write one or more Interrupt Controller registers

3. execute FENCE instruction to wait for any pending write operations to complete

4. finally, restore the state of MIE

Due to its critical nature, it is recommended to disable interrupts globally (MIE=0) beforehand, whenever

configuring interrupt controller registers, and then restore MIE right after, as shown in the sequence above.

After execution of the sequence above, the Interrupt Controller will resume operation in steady state.

1.5.3.2 Configuration Procedure

By default, interrupts are disabled globally, since the reset value of MIE bit in mstatus is 0. Software must set

MIE=1 after initialization of the interrupt stack (including setting mtvec to the interrupt vector address) is

done.

During normal execution, if an interrupt n is to be enabled, the below sequence may be followed:

Espressif Systems 32
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1. save the state of MIE and clear MIE to 0

2. depending upon the type of the interrupt (edge/level), set/unset the nth bit of

INTERRUPT_CORE0_CPU_INT_TYPE_REG

3. set the priority by writing a value to INTERRUPT_CORE0_CPU_INT_PRI_n_REG in range 1(lowest) to 15

(highest)

4. set the nth bit of INTERRUPT_CORE0_CPU_INT_ENABLE_REG

5. execute FENCE instruction

6. restore the state of MIE

When one or more interrupts become pending, the CPU acknowledges (claims) the interrupt with the highest

priority and jumps to the trap vector address corresponding to the interrupt’s ID. Software implementation may

read mcause to infer the type of trap (mcause(31) is 1 for interrupts and 0 for exceptions) and then the ID of the

interrupt (mcause(4-0) gives ID of interrupt or exception). This inference may not be necessary if each entry in the

trap vector are jump instructions to different trap handlers. Ultimately, the trap handler(s) will redirect execution to

the appropriate ISR for this interrupt.

Upon entering into an ISR, software must toggle the nth bit of INTERRUPT_CORE0_CPU_INT_CLEAR_REG if

the interrupt is of edge type, or clear the source of the interrupt if it is of level type.

Software may also update the value of INTERRUPT_CORE0_CPU_INT_THRESH_REG and program MIE=1 for

allowing higher priority interrupts to preempt the current ISR (nesting), however, before doing so, all the state

CSRs must be saved (mepc, mstatus, mcause, etc.) since they will get overwritten due to occurrence of such an

interrupt. Later, when exiting the ISR, the values of these CSRs must be restored.

Finally, after the execution returns from the ISR back to the trap handler, MRET instruction is used to resume

normal execution.

Later, if the n interrupt is no longer needed and needs to be disabled, the following sequence may be

followed:

1. save the state of MIE and clear MIE to 0

2. check if the interrupt is pending in INTERRUPT_CORE0_CPU_INT_EIP_STATUS_REG

3. set/unset the nth bit of INTERRUPT_CORE0_CPU_INT_ENABLE_REG

4. if the interrupt is of edge type and was found to be pending in step 2 above, nth bit of

INTERRUPT_CORE0_CPU_INT_CLEAR_REG must be toggled, so that its pending status gets flushed

5. execute FENCE instruction

6. restore the state of MIE

Above is only a suggested scheme of operation. Actual software implementation may vary.

1.5.4 Register Summary

The addresses in this section are relative to Interrupt Controller base address provided in Table 3-3 in Chapter 3

System and Memory.

For the complete list of interrupt registers and detailed configuration information, please refer to Chapter 8

Interrupt Matrix (INTMTRX), section 8.4, register group ”CPU Interrupt Registers”.

Espressif Systems 33
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1.5.5 Register Description

The addresses in this section are relative to Interrupt Controller base address provided in Table 3-3 in Chapter 3

System and Memory.

For the complete list of interrupt registers and detailed configuration information, please refer to Chapter 8

Interrupt Matrix (INTMTRX), section 8.4, register group ”CPU interrupt register”.

Espressif Systems 34
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1.6 Debug

1.6.1 Overview

This section describes how to debug and test software running on CPU core. Debug support is provided through

standard JTAG pins and complies to RISC-V External Debug Support Specification version 0.13.

Figure 1-2 below shows the main components of External Debug Support.

Figure 1­2. Debug System Overview

The user interacts with the Debug Host (e.g. laptop), which is running a debugger (e.g. gdb). The debugger

communicates with a Debug Translator (e.g. OpenOCD, which may include a hardware driver) to communicate

with Debug Transport Hardware (e.g. Olimex USB-JTAG adapter). The Debug Transport Hardware connects the

Debug Host to the ESP-RV Core’s Debug Transport Module (DTM) through standard JTAG interface. The DTM

provides access to the Debug Module (DM) using the Debug Module Interface (DMI).

The DM allows the debugger to halt the core. Abstract commands provide access to its GPRs (general purpose

registers). The Program Buffer allows the debugger to execute arbitrary code on the core, which allows access to

additional CPU core state. Alternatively, additional abstract commands can provide access to additional CPU

core state. ESP-RV core contains Trigger Module supporting two triggers. When trigger conditions are met,

cores will halt spontaneously and inform the debug module that they have halted.

System bus access block allows memory and peripheral register access without using RISC-V core.

Espressif Systems 35
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1.6.2 Features

Basic debug functionality has the following features:

• Halt and resume CPU core

• Access to CSR and GPR

• Debug from the first instruction after reset

• Core reset control

• Software breakpoint

• Hardware single-stepping

• 16-word program buffer

• System bus access

• Support for two hardware triggers

1.6.3 Functional Description

As mentioned earlier, Debug Scheme conforms to RISC-V External Debug Support Specification version 0.13.

Please refer the specs for functional operation details.

1.6.4 Register Summary

Below is the list of Debug CSR’s supported by ESP-RV core.

Name Description Address Access

dcsr Debug Control and Status 0x7B0 R/W

dpc Debug PC 0x7B1 R/W

dscratch0 Debug Scratch Register 0 0x7B2 R/W

dscratch1 Debug Scratch Register 1 0x7B3 R/W

All the debug module registers are implemented in conformance to RISC-V External Debug Support Specification

version 0.13. Please refer it for more details.

1.6.5 Register Description

Below are the details of Debug CSR’s supported by ESP-RV core.

Espressif Systems 36
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.18. dcsr (0x7B0)

xd
eb
ug
ve
r

4

31 28

res
er
ve
d

0

27 16

eb
rea
km

0

15

res
er
ve
d

0

14 13

eb
rea
ku

0

12

res
er
ve
d

0

11

sto
pc
ou
nt

0

10

sto
pt
im
e

0

9

ca
us
e

0

8 6

res
er
ve
d

0

5 3

ste
p

0

2

pr
v

0

1 0

Reset

xdebugver Debug version. (RO)

• 4: External debug support exists

ebreakm When 1, ebreak instructions in Machine-Mode enter Debug Mode. (R/W)

ebreaku When 1, ebreak instructions in User/Application-Mode enter Debug Mode. (R/W)

stopcount This bit is not implemented. Debugger will always read this bit as 0. (RO)

stoptime This feature is not implemented. Debugger will always read this bit as 0. (RO)

cause Explains why Debug Mode was entered. When there are multiple reasons to enter Debug

Mode in a single cycle, the cause with the highest priority number is the one written.

1. An ebreak instruction was executed. (priority 3)
2. The Trigger Module caused a halt. (priority 4)
3. haltreq was set. (priority 2)
4. The CPU core single stepped because step was set. (priority 1)

Other values are reserved for future use. (RO)

step When set and not in Debug Mode, the core will only execute a single instruction and then enter

Debug Mode. Interrupts are enabled* when this bit is set. If the instruction does not complete due

to an exception, the core will immediately enter Debug Mode before executing the trap handler,

with appropriate exception registers set. (R/W)

prv Contains the privilege level the core was operating in when DebugMode was entered. A debugger

can change this value to change the core’s privilege level when exiting Debug Mode. Only 0x3

(machine-mode) and 0x0 (user-mode) are supported.

*Note: Different from RISC-V Debug specification 0.13

Register 1.19. dpc (0x7B1)

dp
c

0

31 0

Reset

dpc Upon entry to debug mode, dpc is written with the virtual address of the instruction that encoun-

tered the exception. When resuming, the CPU core’s PC is updated to the virtual address stored

in dpc. A debugger may write dpc to change where the CPU resumes. (R/W)

Espressif Systems 37
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.20. dscratch0 (0x7B2)

ds
cr
atc
h0

0

31 0

Reset

dscratch0 Used by Debug Module internally. (R/W)

Register 1.21. dscratch1 (0x7B3)

ds
cr
atc
h1

0

31 0

Reset

dscratch1 Used by Debug Module internally. (R/W)

Espressif Systems 38
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1.7 Hardware Trigger

1.7.1 Features

Hardware Trigger module provides breakpoint and watchpoint capability for debugging. It has the following

features:

• Two independent trigger units

• Matching the address of program counter or load-store accesses

• Execution preemption by causing breakpoint exception

• Halting execution and transferring control to debugger

• Support for NAPOT (naturally aligned power of two) address encoding

1.7.2 Functional Description

The Hardware Trigger module provides four CSRs, which are listed under register summary section. Among

these, tdata1 and tdata2 are abstract CSRs, which means they are shadow registers for accessing internal

registers for each of the eight trigger units, one at a time.

To choose a particular trigger unit write the index (0-7) of that unit into tselect CSR. When tselect is written with a

valid index, the abstract CSRs tdata1 and tdata2 are automatically mapped to reflect internal registers of that

trigger unit. Each trigger unit has two internal registers, namely mcontrol and maddress, which are mapped to

tdata1 and tdata2, respectively.

Writing larger than allowed indexes to tselect will clip the written value to the largest valid index, which can be

read back. This property may be used for enumerating the number of available triggers during initialization or

when using a debugger.

Since software or debugger may need to know the type of the selected trigger to correctly interpret tdata1 and

tdata2, the 4 bits (31-28) of tdata1 encodes the type of the selected trigger. This type field is read-only and always

provides a value of 0x2 for every trigger, which stands for match type trigger, hence, it is inferred that tdata1 and

tdata2 are to be interpreted as mcontrol and maddress. The information regarding other possible values can be

found in the RISC-V Debug Specification v0.13, but this trigger module only supports type 0x2.

Once a trigger unit has been chosen by writing its index to tselect, it will become possible to configure it by setting

the appropriate bits in mcontrol CSR (tdata1) and writing the target address to maddress CSR (tdata2).

Each trigger unit can be configured to either cause breakpoint exception or enter debug mode, by writing to the

action bit of mcontrol. This bit can only be written from debugger, thus by default a trigger, if enabled, will cause

breakpoint exception.

mcontrol for each trigger unit has a hit bit which may be read, after CPU halts or enters exception, to find out if

this was the trigger unit that fired. This bit is set as soon as the corresponding trigger fires, but it has to be

manually cleared before resuming operation. Although, failing to clear it doesn’t affect normal execution in any

way.

Each trigger unit only supports match on address, although this address could either be that of a load/store

access or the virtual address of an instruction. The address and size of a region are specified by writing to

maddress (tdata2) CSR for the selected trigger unit. Larger than 1 byte region sizes are specified through NAPOT

(naturally aligned power of two) encoding (see Table 1-5) and enabled by setting match bit in mcontrol. Note that

Espressif Systems 39
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

for NAPOT encoded addresses, by definition, the start address is constrained to be aligned to (i.e. an integer

multiple of) the region size.

Table 1­5. NAPOT encoding for maddress

maddress(31-0) Start Address Size (bytes)

aaa...aaaaaaaaa0 aaa...aaaaaaaaa0 2

aaa...aaaaaaaa01 aaa...aaaaaaaa00 4

aaa...aaaaaaa011 aaa...aaaaaaa000 8

aaa...aaaaaa0111 aaa...aaaaaa0000 16

....

a01...1111111111 a00...0000000000 231

tcontrol CSR is common to all trigger units. It is used for preventing triggers from causing repeated exceptions in

machine-mode while execution is happening inside a trap handler. This also disables breakpoint exceptions

inside ISRs by default, although, it is possible to manually enable this right before entering an ISR, for debugging

purposes. This CSR is not relevant if a trigger is configured to enter debug mode.

1.7.3 Trigger Execution Flow

When hart is halted and enters debug mode due to the firing of a trigger (action = 1):

• dpc is set to current PC (in decode stage)

• cause field in dcsr is set to 2, which means halt due to trigger

• hit bit is set to 1, corresponding to the trigger(s) which fired

When hart goes into trap due to the firing of a trigger (action = 0) :

• mepc is set to current PC (in decode stage)

• mcause is set to 3, which means breakpoint exception

• mpte is set to the value in mte right before trap

• mte is set to 0

• hit bit is set to 1, corresponding to the trigger(s) which fired

Note : If two different triggers fire at the same time, one with action = 0 and another with action = 1, then hart is

halted and enters debug mode.

1.7.4 Register Summary

Below is a list of Trigger Module CSRs supported by the CPU. These are only accessible from

machine-mode.

Name Description Address Access

tselect Trigger Select Register 0x7A0 R/W

tdata1 Trigger Abstract Data 1 0x7A1 R/W

tdata2 Trigger Abstract Data 2 0x7A2 R/W

tcontrol Global Trigger Control 0x7A5 R/W

Espressif Systems 40
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1.7.5 Register Description

Register 1.22. tselect (0x7A0)

(re
se
rve
d)

0x00000000

31 3

tse
lec
t

0x0

2 0

Reset

tselect Index (0-7) of the selected trigger unit. (R/W)

Register 1.23. tdata1 (0x7A1)

typ
e

0x2

31 28

dm
od
e

0

27

da
ta

0x3e00000

26 0

Reset

type Type of trigger. (RO)

This field is reserved since only match type (0x2) triggers are supported.

dmode This is set to 1 if a trigger is being used by the debugger. (R/W *)

• 0: Both Debug and machine-mode can write the tdata1 and tdata2 registers at the selected

tselect.
• 1: Only Debug Mode can write the tdata1 and tdata2 registers at the selected tselect. Writes

from other modes are ignored.

* Note : Only writable from debug mode.

data Abstract tdata1 content. (R/W)

This will always be interpreted as fields of mcontrol since only match type (0x2) triggers are sup-

ported.

Register 1.24. tdata2 (0x7A2)

td
ata
2

0x00000000

31 0

Reset

tdata2 Abstract tdata2 content. (R/W)

This will always be interpreted as maddress since only match type (0x2) triggers are supported.

Espressif Systems 41
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.25. tcontrol (0x7A5)

(re
se
rve
d)

0x000000

31 8

m
pt
e

0

7

(re
se
rve
d)

0x00

6 1

m
te

0

0

Reset

mpte Machine-mode previous trigger enable bit. (R/W)

• When CPU is taking a machine-mode trap, the value of mte is automatically pushed into this.
• When CPU is executing MRET, its value is popped back into mte, so this becomes 0.

mte Machine-mode trigger enable bit. (R/W)

• When CPU is taking a machine-mode trap, its value is automatically pushed into mpte, so

this becomes 0 and triggers with action=0 are disabled globally.
• When CPU is executing MRET, the value of mpte is automatically popped back into this.

Espressif Systems 42
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.26. mcontrol (0x7A1)

(re
se
rve
d)

0x2

31 28

dm
od
e

0

27

(re
se
rve
d)

0x1f

26 21

hit

0

20

(re
se
rve
d)

0

19 16

ac
tio
n

0

15 12

(re
se
rve
d)

0

11

m
atc
h

0

10 7

m

0

6

(re
se
rve
d)

0

5 4

u

0

3

ex
ec
ut
e

0

2

sto
re

0

1

loa
d

0

0

Reset

dmode Same as dmode in tdata1.

hit This is found to be 1 if the selected trigger had fired previously. (R/W)

This bit is to be cleared manually.

action Write this for configuring the selected trigger to perform one of the available actions when firing.

(R/W)

Valid options are:

• 0x0: cause breakpoint exception.
• 0x1: enter debug mode (only valid when dmode = 1)

Note : Writing an invalid value will set this to the default value 0x0.

match Write this for configuring the selected trigger to perform one of the available matching opera-

tions on a data/instruction address. (R/W) Valid options are:

• 0x0: exact byte match, i.e. address corresponding to one of the bytes in an access must

match the value of maddress exactly.
• 0x1: NAPOT match, i.e. at least one of the bytes of an access must lie in the NAPOT region

specified in maddress.

Note : Writing a larger value will clip it to the largest possible value 0x1.

m Set this for enabling selected trigger to operate in machine-mode. (R/W)

u Set this for enabling selected trigger to operate in user-mode. (R/W)

execute Set this for configuring the selected trigger to fire right before an instruction with matching

virtual address is executed by the CPU. (R/W)

store Set this for configuring the selected trigger to fire right before a store operation with matching

data address is executed by the CPU. (R/W)

load Set this for configuring the selected trigger to fire right before a load operation with matching

data address is executed by the CPU. (R/W)

Espressif Systems 43
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Register 1.27. maddress (0x7A2)

m
ad
dr
es
s

0x00000000

31 0

Reset

maddress Address used by the selected trigger when performing match operation. (R/W)

This is decoded as NAPOT when match=1 in mcontrol.

Espressif Systems 44
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

1.8 Memory Protection

1.8.1 Overview

The CPU core includes a physical memory protection unit, which can be used by software to set memory access

privileges (read, write and execute permissions) for required memory regions. It supports 16 memory regions, of

which some address regions have been hard coded to values in accordance with ESP8684 memory map and

the rest of address regions are kept programmable to split SRAM into separate IRAM/DRAM regions as per

software code size.

It is fully compliant to the Physical Memory Protection (PMP) description specified in RISC-V Instruction Set

Manual, Volume II: Privileged Architecture, Version 1.10. However, in order to save area, values of 13 pmpaddrX
registers (refer Register Summary) have been hard-coded. Details are provided in next sub-section.

For detailed understanding of the RISC-V PMP concept, please refer to RISC-V Instruction Set Manual, Volume II:

Privileged Architecture, Version 1.10.

1.8.2 Features

The memory protection unit has the following features:

• Support for 16 PMP entries

• Programmable pmpaddr0-2

• Hard-coded pmpaddr3-15 as per ESP8684 memory map

1.8.3 Functional Description

Software can program the PMP unit’s configuration and address registers in order to contain faults and support

secure execution. PMP CSR’s can only be programmed in machine-mode. Once enabled, write, read and

execute permission checks are applied to all the accesses in user-mode as per programmed values of enabled

pmpcfgX and pmpaddrX registers.

By default, PMP grants permission to all accesses in machine-mode and revokes permission of all access in

user-mode. This implies that it is mandatory to program address range and valid permissions in pmpcfgX and

pmpaddr registers for any valid access to pass through in user-mode. However, it is not required for

machine-mode as PMP permits all accesses to go through by default. In cases where PMP checks are also

required in machine-mode, software can set the lock bit of required PMP entry to enable permission checks on it.

Once lock bit is set, it can only be cleared through CPU reset.

When any instruction is being fetched from memory region without execute permissions, exception is generated

at processor level and exception cause is set as instruction access fault in mcause CSR. Similarly, any load/store

access without valid read/write permissions, will result in exception generation with mcause updated as load

access and store access fault respectively. In case of load/store access faults, violating address is captured in

mtval CSR.

1.8.4 Register Summary

Below is a list of PMP CSRs supported by the CPU. These are only accessible from machine-mode. As

mentioned earlier, pmpaddrX0-2 are kept programmable to split the SRAM region as per software requirements.

pmpaddrX3-15 are hard coded with values specified in ”CSR Reset Value” column. These hard-coded values

Espressif Systems 45
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

have been derived to match the SoC memory map specified in ”PMP Region” column. To enable any PMP

region, the A field in associated pmpcfgX register should always be programmed with value specified in ”Address

Matching Mode” column.

Name Description

CSR

Address

CSR Reset

Value

CSR

Access

Address

Matching

Mode PMP Region

pmpcfg0 PMP config register 0x3A0 0x0 R/W - -

pmpcfg1 PMP config register 0x3A1 0x0 R/W - -

pmpcfg2 PMP config register 0x3A2 0x0 R/W - -

pmpcfg3 PMP config register 0x3A3 0x0 R/W - -

pmpaddr0 PMP address register 0x3B0 0x0 R/W OFF
IRAM Base

Address

pmpaddr1 PMP address register 0x3B1 0x0 R/W TOR
IRAM End

Address

pmpaddr2 PMP address register 0x3B2 0x0 R/W OFF
DRAM Base

Address

pmpaddr3 PMP address register 0x3B3 0x0FF38000 RO TOR

DRAM End

Address

0x3FCDFFFF

pmpaddr4 PMP address register 0x3B4 0x08FFFFFF RO NAPOT

0x20000000 -

0x27FFFFFF

(128 MB)

pmpaddr5 PMP address register 0x3B5 0x0F07FFFF RO NAPOT

0x3C000000 -

0x3C3FFFFF

(4 MB)

pmpaddr6 PMP address register 0x3B6 0x0FFC0000 RO OFF 0x3FF00000

pmpaddr7 PMP address register 0x3B7 0x0FFD4000 RO TOR

0x3FF00000 -

0x3FF4FFFF

(320 KB)

pmpaddr8 PMP address register 0x3B8 0x10000000 RO OFF 0x40000000

pmpaddr9 PMP address register 0x3B9 0x10024000 RO TOR

0x40000000 -

0x4008FFFF

(576 KB)

pmpaddr10 PMP address register 0x3BA 0x1087FFFF RO NAPOT

0x42000000 -

0x423FFFFF

(4 MB)

pmpaddr11 PMP address register 0x3BB 0x1801FFFF RO NAPOT

0x60000000 -

0x600FFFFF

(1 MB)

pmpaddr12 PMP address register 0x3BC 0x100DF7FF RO NAPOT

0x4037C000 -

0x4037FFFF

(16 KB)

pmpaddr13 PMP address register 0x3BD 0x3FFFFFFF RO NA4
0xFFFFFFFF

(4 Byte)

pmpaddr14 PMP address register 0x3BE 0x0 RO OFF 0x0

Espressif Systems 46
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

1 ESP-RISC-V CPU GoBack

Name Description

CSR

Address

CSR Reset

Value

CSR

Access

Address

Matching

Mode PMP Region

pmpaddr15 PMP address register 0x3BF 0x3FFFFFFF RO TOR
0xFFFFFFFE

(4 GB)

1.8.5 Register Description

PMP unit implements all pmpcfg0-3 and pmpaddr0-15 CSRs as defined in RISC-V Instruction Set Manual

Volume II: Privileged Architecture, Version 1.10.

Espressif Systems 47
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

2 GDMA Controller (GDMA)

2.1 Overview

General Direct Memory Access (GDMA) is a feature that allows peripheral-to-memory, memory-to-peripheral, and

memory-to-memory data transfer at a high speed. The CPU is not involved in the GDMA transfer, and therefore it

becomes more efficient with less workload.

The GDMA controller in ESP8684 has two independent channels, i.e. one transmit channel (i.e. Tx channel 0)

and one receive channel (i.e. Rx channel 0). These two channels are shared by peripherals with GDMA feature,

namely SPI2, and SHA. Users can assign the two channels to any of these peripherals.

The GDMA controller uses fixed-priority and round-robin channel arbitration schemes to manage peripherals’

needs for bandwidth.

Figure 2­1. Modules with GDMA Feature and GDMA Channels

2.2 Features

The GDMA controller has the following features:

• Programmable length of data to be transferred in bytes

• Linked list of descriptors

• INCR burst transfer when accessing internal RAM

• Access to an address space of 256 KB at most in internal RAM

• One transmit channel and one receive channel

• Software-configurable selection of peripheral requesting its service

• Fixed channel priority and round-robin channel arbitration

• AHB bus architecture

2.3 Architecture

In ESP8684, all modules that need high-speed data transfer support GDMA. The GDMA controller and CPU data

bus have access to the same address space in internal RAM. Figure 2-2 shows the basic architecture of the

GDMA engine.

Espressif Systems 48
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Figure 2­2. GDMA Engine Architecture

The GDMA controller has two independent channels, i.e. one transmit channel and one receive channel. Every

channel can be connected to different peripherals. In other words, channels are general-purpose, shared by

peripherals. The GDMA engine reads data from or writes data to internal RAM via the AHB_BUS. For available

address range of Internal RAM, please see Chapter 3 System and Memory. Software can use the GDMA engine

through linked lists. These linked lists, stored in internal RAM, consist of outlink and inlink. The GDMA controller

reads an outlink (i.e. a linked list of transmit descriptors) from internal RAM and transmits data in corresponding

RAM according to the outlink, or reads an inlink (i.e. a linked list of receive descriptors) and stores received data

into specific address space in RAM according to the inlink.

2.4 Functional Description

2.4.1 Data Transfer Between Peripheral and Memory

The GDMA controller can transfer data from memory to peripheral (transmit) and from peripheral to memory

(receive). A transmit channel transfers data in the specified memory location to a peripheral’s transmitter via an

outlink, whereas a receive channel transfers data received by a peripheral to the specified memory location via an

inlink.

Every transmit and receive channel can be connected to any peripheral with GDMA feature. Table 2-1 illustrates

how to select the peripheral to be connected via registers. When one channel is connected to a peripheral, the

other channel can not be connected to that peripheral.

Espressif Systems 49
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Table 2­1. Selecting Peripherals via Register Configuration

GDMA_PERI_IN_SEL_CH0

GDMA_PERI_OUT_SEL_CH0
Peripheral

0 SPI2

1 Reserved

2 Reserved

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 SHA

8 Reserved

2.4.2 Memory­to­Memory Data Transfer

The GDMA controller also allows memory-to-memory data transfer. Such data transfer can be enabled by setting

GDMA_MEM_TRANS_EN_CH0, which connects the output of transmit channel 0 to the input of receive channel

0.

2.4.3 Linked List

Figure 2­3. Structure of a Linked List

Figure 2-3 shows the structure of a linked list. An outlink and an inlink have the same structure. A linked list is

formed by one or more descriptors, and each descriptor consists of three words. Linked lists should be in

internal RAM for the GDMA engine to be able to use them. The meaning of each field is as follows:

• Owner (DW0) [31]: Specifies who is allowed to access the buffer that this descriptor points to.

1’b0: CPU can access the buffer;

1’b1: The GDMA controller can access the buffer.

Espressif Systems 50
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

When the GDMA controller stops using the buffer, this bit in a transmit descriptor is automatically cleared by

hardware, and this bit in a receive descriptor is automatically cleared by hardware only if

GDMA_OUT_AUTO_WRBACK_CH0 is set to 1. Before software loads a linked list, this bit should be set to

1.

Note: GDMA_OUT is the prefix of transmit channel registers, and GDMA_IN is the prefix of receive channel

registers.

• suc_eof (DW0) [30]: Specifies whether this descriptor is the last descriptor in the list.

1’b0: This descriptor is not the last one;

1’b1: This descriptor is the last one.

Software clears suc_eof bit in receive descriptors. When a frame or packet has been received, this bit in

the last receive descriptor is set by hardware, and this bit in the last transmit descriptor is set by software.

• Reserved (DW0) [29]: Reserved. Value of this bit does not matter.

• err_eof (DW0) [28]: Specifies whether the received data has errors.

When a frame or packet has been received and an error is detected in the received frame or packet, this bit

in the receive descriptor is set to 1 by hardware.

• Reserved (DW0) [27:24]: Reserved.

• Length (DW0) [23:12]: Specifies the number of valid bytes in the buffer that this descriptor points to. This

field in a transmit descriptor is written by software and indicates how many bytes can be read from the

buffer; this field in a receive descriptor is written by hardware automatically and indicates how many valid

bytes have been stored into the buffer.

• Size (DW0) [11:0]: Specifies the size of the buffer that this descriptor points to. Size should be larger than

or equal to length.

• Buffer address pointer (DW1): Address of the buffer. This field can only point to internal RAM.

• Next descriptor address (DW2): Address of the next descriptor. If the current descriptor is the last one, this

value is 0. This field can only point to internal RAM.

When a data frame or packet has been received, the suc_eof bit in the current receive descriptor will be set to 1,

and the GDMA controller stops data transmission to the buffer pointed by the current receive descriptor. Even if

the length of data received is smaller than the size of the buffer, data received in the next transaction would not

be stored in the available space of this buffer. The data would rather be stored in the buffer pointed by the next

receive descriptor.

2.4.4 Enabling GDMA

Software uses the GDMA controller through linked lists. When the GDMA controller receives data, software loads

an inlink, configures GDMA_INLINK_ADDR_CH0 field with address of the first receive descriptor, and sets

GDMA_INLINK_START_CH0 bit to enable GDMA. When the GDMA controller transmits data, software loads an

outlink, prepares data to be transmitted, configures GDMA_OUTLINK_ADDR_CH0 field with address of the first

transmit descriptor, and sets GDMA_OUTLINK_START_CH0 bit to enable GDMA. GDMA_INLINK_START_CH0

bit and GDMA_OUTLINK_START_CH0 bit are cleared automatically by hardware.

In some cases, you may want to append more descriptors to a DMA transfer that is already started. Naively, it

would seem to be possible to do this only by setting the next descriptor address pointer field (DW2) at the end of

the current list to the first descriptor of the to-be-added list. However, this strategy fails if the existing DMA

transfer is almost or entirely finished. Instead, the GDMA engine has specialized logic to make sure a DMA

Espressif Systems 51
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

transfer can be continued or restarted: if it is still ongoing, it will make sure to take the appended descriptors into

account; if the transfer has already finished, it will restart with the new descriptors. This is implemented in the

Restart function.

When using the Restart function, software needs to rewrite address of the first descriptor in the new list to DW2

of the last descriptor in the loaded list, and set GDMA_INLINK_RESTART_CH0 bit or

GDMA_OUTLINK_RESTART_CH0 bit (these two bits are cleared automatically by hardware). As shown in Figure

2-4, by doing so hardware can obtain the address of the first descriptor in the new list when reading the last

descriptor in the loaded list, and then read the new list.

Figure 2­4. Relationship among Linked Lists

2.4.5 Linked List Reading Process

Once configured and enabled by software, the GDMA controller starts to read the linked list from internal RAM.

The GDMA performs checks on descriptors in the linked list. Only if descriptors pass the checks, will the

corresponding GDMA channel transfer data. If the descriptors fail any of the checks, hardware will trigger

descriptor error interrupt (either GDMA_IN_DSCR_ERR_CH0_INT or GDMA_OUT_DSCR_ERR_CH0_INT), and

the channel will halt.

The checks performed on descriptors are:

• Owner bit check when GDMA_IN_CHECK_OWNER_CH0 or GDMA_OUT_CHECK_OWNER_CH0 is set to

1. If the owner bit is 0, the buffer should be accessed by the CPU. In this case, the owner bit fails the

check. The owner bit check will be skipped if GDMA_IN_CHECK_OWNER_CH0 or

GDMA_OUT_CHECK_OWNER_CH0 is 0;

• Buffer address pointer (DW1) check. If the buffer address pointer does not point to 0x3FCA0000 ~
0x3FCDFFFF (please refer to Section 2.4.7), it fails the check.

After software detects a descriptor error interrupt, it must reset the corresponding channel, and reconfigure this

channel, and enable GDMA. For details, see Section 2.6.2, Section 2.6.3, and Section 2.6.4.

Note: The third word (DW2) in a descriptor can only point to a location in internal RAM, given that the third word

points to the next descriptor to use and that all descriptors must be in internal memory.

Espressif Systems 52
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

2.4.6 EOF

The GDMA controller uses EOF (end of frame) flags to indicate the end of data frame or packet

transmission.

Before the GDMA controller transmits data, GDMA_OUT_TOTAL_EOF_CH0_INT_ENA bit should be set to

enable GDMA_OUT_EOF_CH0_INT interrupt. If data in the buffer pointed by the last descriptor (with EOF) has

been transmitted, a GDMA_OUT_EOF_CH0_INT interrupt is generated.

Before the GDMA controller receives data, GDMA_IN_SUC_EOF_CH0_INT_ENA bit should be set to enable

GDMA_IN_SUC_EOF_CH0_INT interrupt. If a data frame or packet has been received successfully, a

GDMA_IN_SUC_EOF_CH0_INT interrupt is generated. In addition, the GDMA controller also supports

GDMA_IN_ERR_CH0_EOF_INT interrupt. This interrupt is enabled by setting

GDMA_IN_ERR_EOF_CH0_INT_ENA bit, and it indicates that a data frame or packet has been received with

errors.

When detecting a GDMA_OUT_TOTAL_EOF_CH0_INT or a GDMA_IN_SUC_EOF_CH0_INT interrupt, software

can record the value of GDMA_OUT_EOF_DES_ADDR_CH0 or GDMA_IN_SUC_EOF_DES_ADDR_CH0 field, i.e.

address of the last descriptor. Therefore, software can tell which descriptors have been used and reclaim

them.

Note: In this chapter, EOF of transmit descriptors refers to suc_eof, while EOF of receive descriptors refers to

both suc_eof and err_eof.

2.4.7 Accessing Internal RAM

Any transmit and receive channel of GDMA can access 0x3FCA0000 ~ 0x3FCDFFFF in internal RAM. To improve

data transfer efficiency, GDMA can send data in burst mode, which is disabled by default. This mode is enabled

for receive channel by setting GDMA_IN_DATA_BURST_EN_CH0, and enabled for transmit channel by setting

GDMA_OUT_DATA_BURST_EN_CH0.

Table 2­2. Descriptor Field Alignment Requirements

Inlink/Outlink Burst Mode Size Length Buffer Address Pointer

Inlink
0 —1 — —

1 Word-aligned — Word-aligned

Outlink
0 — — —

1 — — —

1 ”—” means no alignment requirements.

Table 2-2 lists the requirements for descriptor field alignment when accessing internal RAM.

When burst mode is disabled, size, length, and buffer address pointer in both transmit and receive descriptors do

not need to be word-aligned. That is to say, GDMA can read data of specified length (1 ~ 4095 bytes) from any

start addresses in the accessible address range, or write received data of the specified length (1 ~ 4095 bytes) to

any contiguous addresses in the accessible address range.

When burst mode is enabled, size, length, and buffer address pointer in transmit descriptors are also not

necessarily word-aligned. However, size and buffer address pointer in receive descriptors except length should

be word-aligned.

Espressif Systems 53
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

2.4.8 Arbitration

To ensure timely response to peripherals running at a high speed with low latency (such as SPI), the GDMA

controller implements a fixed-priority channel arbitration scheme. That is to say, each channel can be assigned a

priority from 0 ~ 9. The larger the number, the higher the priority, and the more timely the response. When several

channels are assigned the same priority, the GDMA controller adopts a round-robin arbitration scheme.

Please note that the overall throughput of peripherals with GDMA feature cannot exceed the maximum bandwidth

of the GDMA. Otherwise, requests from low-priority peripherals might not be responded to in time.

2.5 GDMA Interrupts

• GDMA_IN_DSCR_EMPTY_CH0_INT: Triggered when the size of the buffer pointed by receive descriptors is

smaller than the length of data to be received via receive channel 0.

• GDMA_IN_DSCR_ERR_CH0_INT: Triggered when an error is detected in a receive descriptor on receive

channel 0.

• GDMA_IN_ERR_EOF_CH0_INT: Triggered when an error is detected in the data frame or packet received

via receive channel 0. This interrupt is used only for UHCI0 peripheral (UART0 or UART1).

• GDMA_IN_SUC_EOF_CH0_INT: Triggered when a data frame or packet has been received via receive

channel 0.

• GDMA_IN_DONE_CH0_INT: Triggered when all data corresponding to a receive descriptor has been

received via receive channel 0.

• GDMA_OUT_TOTAL_EOF_CH0_INT: Triggered when all data corresponding to a linked list (including

multiple descriptors) has been sent via transmit channel 0.

• GDMA_OUT_DSCR_ERR_CH0_INT: Triggered when an error is detected in a transmit descriptor on

transmit channel 0.

• GDMA_OUT_EOF_CH0_INT: Triggered when EOF in a transmit descriptor is 1 and data corresponding to

this descriptor has been sent via transmit channel 0. If GDMA_OUT_EOF_MODE_CH0 is 0, this interrupt

will be triggered when the last byte of data corresponding to this descriptor enters GDMA’s transmit

channel; if GDMA_OUT_EOF_MODE_CH0 is 1, this interrupt is triggered when the last byte of data is taken

from GDMA’s transmit channel.

• GDMA_OUT_DONE_CH0_INT: Triggered when all data corresponding to a transmit descriptor has been

sent via transmit channel 0.

2.6 Programming Procedures

2.6.1 Programming Procedure for GDMA Clock and Reset

GDMA’s clock and reset should be configured as follows:

1. Set SYSTEM_DMA_CLK_EN to enable GDMA’s clock;

2. Clear SYSTEM_DMA_RST to reset GDMA.

Espressif Systems 54
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

2.6.2 Programming Procedure for GDMA’s Transmit Channel

To transmit data, GDMA’s transmit channel should be configured by software as follows:

1. Set GDMA_OUT_RST_CH0 first to 1 and then to 0, to reset the state machine of GDMA’s transmit channel

and FIFO pointer;

2. Load an outlink, and configure GDMA_OUTLINK_ADDR_CH0 with address of the first transmit descriptor;

3. Configure GDMA_PERI_OUT_SEL_CH0 with the value corresponding to the peripheral to be connected, as

shown in Table 2-1;

4. Set GDMA_OUTLINK_START_CH0 to enable GDMA’s transmit channel for data transfer;

5. Configure and enable the corresponding peripheral (SPI2 or SHA). See details in individual chapters of

these peripherals;

6. Wait for GDMA_OUT_EOF_CH0_INT interrupt, which indicates the completion of data transfer.

2.6.3 Programming Procedure for GDMA’s Receive Channel

To receive data, GDMA’s receive channel should be configured by software as follows:

1. Set GDMA_IN_RST_CH0 first to 1 and then to 0, to reset the state machine of GDMA’s receive channel and

FIFO pointer;

2. Load an inlink, and configure GDMA_INLINK_ADDR_CH0 with address of the first receive descriptor;

3. Configure GDMA_PERI_IN_SEL_CH0 with the value corresponding to the peripheral to be connected, as

shown in Table 2-1;

4. Set GDMA_INLINK_START_CH0 to enable GDMA’s receive channel for data transfer;

5. Configure and enable the corresponding peripheral (SPI2). See details in individual chapters of these

peripherals;

6. Wait for GDMA_IN_SUC_EOF_CH0_INT interrupt, which indicates that a data frame or packet has been

received.

2.6.4 Programming Procedure for Memory­to­Memory Transfer

To transfer data from one memory location to another, GDMA should be configured by software as follows:

1. Set GDMA_OUT_RST_CH0 first to 1 and then to 0, to reset the state machine of GDMA’s transmit channel

and FIFO pointer;

2. Set GDMA_IN_RST_CH0 first to 1 and then to 0, to reset the state machine of GDMA’s receive channel and

FIFO pointer;

3. Load an outlink, and configure GDMA_OUTLINK_ADDR_CH0 with address of the first transmit descriptor;

4. Load an inlink, and configure GDMA_INLINK_ADDR_CH0 with address of the first receive descriptor;

5. Set GDMA_MEM_TRANS_EN_CH0 to enable memory-to-memory transfer;

6. Set GDMA_OUTLINK_START_CH0 to enable GDMA’s transmit channel for data transfer;

7. Set GDMA_INLINK_START_CH0 to enable GDMA’s receive channel for data transfer;

Espressif Systems 55
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

8. Wait for GDMA_IN_SUC_EOF_CH0_INT interrupt, which indicates that which indicates that a data

transaction has been completed.

Espressif Systems 56
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

2.7 Register Summary

The addresses in this section are relative to GDMA Controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Name Description Address Access

Interrupt Registers

GDMA_INT_RAW_CH0_REG Raw status interrupt of RX channel 0 0x0000 R/WTC/SS

GDMA_INT_ST_CH0_REG Masked interrupt of RX channel 0 0x0004 RO

GDMA_INT_ENA_CH0_REG Interrupt enable bits of RX channel 0 0x0008 R/W

GDMA_INT_CLR_CH0_REG Interrupt clear bits of RX channel 0 0x000C WT

Configuration Registers

GDMA_MISC_CONF_REG Miscellaneous register 0x0044 R/W

GDMA_IN_CONF0_CH0_REG Configuration register 0 of RX channel 0 0x0070 R/W

GDMA_IN_CONF1_CH0_REG Configuration register 1 of RX channel 0 0x0074 R/W

GDMA_IN_POP_CH0_REG Pop control register of RX channel 0 0x007C varies

GDMA_IN_LINK_CH0_REG
Link descriptor configuration and control

register of RX channel 0
0x0080 varies

GDMA_OUT_CONF0_CH0_REG Configuration register 0 of TX channel 0 0x00D0 R/W

GDMA_OUT_CONF1_CH0_REG Configuration register 1 of TX channel 0 0x00D4 R/W

GDMA_OUT_PUSH_CH0_REG Push control register of TX channel 0 0x00DC varies

GDMA_OUT_LINK_CH0_REG
Link descriptor configuration and control

register of TX channel 0
0x00E0 varies

Status Registers

GDMA_INFIFO_STATUS_CH0_REG RX FIFO status of RX channel 0 0x0078 RO

GDMA_IN_STATE_CH0_REG Receive status of RX channel 0 0x0084 RO

GDMA_IN_SUC_EOF_DES_ADDR_CH0

_REG

Inlink descriptor address when EOF

occurs of RX channel 0
0x0088 RO

GDMA_IN_ERR_EOF_DES_ADDR_CH0

_REG

Inlink descriptor address when errors

occur of RX channel 0
0x008C RO

GDMA_IN_DSCR_CH0_REG
Current inlink descriptor address of RX

channel 0
0x0090 RO

GDMA_IN_DSCR_BF0_CH0_REG
The last inlink descriptor address of RX

channel 0
0x0094 RO

GDMA_IN_DSCR_BF1_CH0_REG
The second-to-last inlink descriptor

address of RX channel 0
0x0098 RO

GDMA_OUTFIFO_STATUS_CH0_REG TX FIFO status of TX channel 0 0x00D8 RO

GDMA_OUT_STATE_CH0_REG Transmit status of TX channel 0 0x00E4 RO

GDMA_OUT_EOF_DES_ADDR_CH0_REG

Outlink descriptor address when EOF

occurs of TX channel 0
0x00E8 RO

GDMA_OUT_EOF_BFR_DES_ADDR_CH0

_REG

The last outlink descriptor address when

EOF occurs of TX channel 0
0x00EC RO

GDMA_OUT_DSCR_CH0_REG
Current inlink descriptor address of TX

channel 0
0x00F0 RO

GDMA_OUT_DSCR_BF0_CH0_REG
The last inlink descriptor address of TX

channel 0
0x00F4 RO

Espressif Systems 57
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Name Description Address Access

GDMA_OUT_DSCR_BF1_CH0_REG
The second-to-last inlink descriptor

address of TX channel 0
0x00F8 RO

Priority Registers

GDMA_IN_PRI_CH0_REG Priority register of RX channel 0 0x009C R/W

GDMA_OUT_PRI_CH0_REG Priority register of TX channel 0 0x00FC R/W

Peripheral Select Registers

GDMA_IN_PERI_SEL_CH0_REG Peripheral selection of RX channel 0 0x00A0 R/W

GDMA_OUT_PERI_SEL_CH0_REG Peripheral selection of TX channel 0 0x0100 R/W

Version Registers

GDMA_DATE_REG Version control register 0x0048 R/W

Espressif Systems 58
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

2.8 Registers

The addresses in this section are relative to GDMA Controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Register 2.1. GDMA_INT_RAW_CH0_REG (0x0000)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GD
M
A_
OU
TF
IFO
_U
DF
_C
H0
_IN
T_
RA
W

0

12

GD
M
A_
OU
TF
IFO
_O
VF
_C
H0
_IN
T_
RA
W

0

11

GD
M
A_
IN
FIF
O_
UD
F_
CH
0_
IN
T_
RA
W

0

10

GD
M
A_
IN
FIF
O_
OV
F_
CH
0_
IN
T_
RA
W

0

9

GD
M
A_
OU
T_
TO
TA
L_
EO
F_
CH
0_
IN
T_
RA
W

0

8

GD
M
A_
IN
_D
SC
R_
EM
PT
Y_
CH
0_
IN
T_
RA
W

0

7

GD
M
A_
OU
T_
DS
CR
_E
RR
_C
H0
_IN
T_
RA
W

0

6

GD
M
A_
IN
_D
SC
R_
ER
R_
CH
0_
IN
T_
RA
W

0

5

GD
M
A_
OU
T_
EO
F_
CH
0_
IN
T_
RA
W

0

4

GD
M
A_
OU
T_
DO
NE
_C
H0
_IN
T_
RA
W

0

3

GD
M
A_
IN
_E
RR
_E
OF
_C
H0
_IN
T_
RA
W

0

2

GD
M
A_
IN
_S
UC
_E
OF
_C
H0
_IN
T_
RA
W

0

1

GD
M
A_
IN
_D
ON
E_
CH
0_
IN
T_
RA
W

0

0

Reset

GDMA_IN_DONE_CH0_INT_RAW The raw interrupt bit turns to high level when the last data pointed

by one receive descriptor has been received for RX channel 0. (R/WTC/SS)

GDMA_IN_SUC_EOF_CH0_INT_RAW The raw interrupt bit turns to high level when the last data

pointed by one receive descriptor has been received for RX channel 0. (R/WTC/SS)

GDMA_IN_ERR_EOF_CH0_INT_RAW Reserved. (R/WTC/SS)

GDMA_OUT_DONE_CH0_INT_RAW The raw interrupt bit turns to high level when the last data

pointed by one transmit descriptor has been transmitted to peripherals for TX channel 0.

(R/WTC/SS)

GDMA_OUT_EOF_CH0_INT_RAW The raw interrupt bit turns to high level when the last data pointed

by one transmit descriptor has been read from memory for TX channel 0. (R/WTC/SS)

GDMA_IN_DSCR_ERR_CH0_INT_RAW The raw interrupt bit turns to high level when detecting re-

ceive descriptor error, including owner error, the second and third word error of receive descriptor

for RX channel 0. (R/WTC/SS)

GDMA_OUT_DSCR_ERR_CH0_INT_RAW The raw interrupt bit turns to high level when detecting

transmit descriptor error, including owner error, the second and third word error of transmit de-

scriptor for TX channel 0. (R/WTC/SS)

Continued on the next page...

Espressif Systems 59
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.1. GDMA_INT_RAW_CH0_REG (0x0000)

Continued from the previous page...

GDMA_IN_DSCR_EMPTY_CH0_INT_RAW The raw interrupt bit turns to high level when RX buffer

pointed by inlink is full and receiving data is not completed, but there is no more inlink for RX

channel 0. (R/WTC/SS)

GDMA_OUT_TOTAL_EOF_CH0_INT_RAW The raw interrupt bit turns to high level when data corre-

sponding to an outlink (includes one descriptor or few descriptors) is transmitted out for TX channel

0. (R/WTC/SS)

GDMA_INFIFO_OVF_CH0_INT_RAW This raw interrupt bit turns to high level when level 1 FIFO of

RX channel 0 is overflow. (R/WTC/SS)

GDMA_INFIFO_UDF_CH0_INT_RAW This raw interrupt bit turns to high level when level 1 FIFO of

RX channel 0 is underflow. (R/WTC/SS)

GDMA_OUTFIFO_OVF_CH0_INT_RAW This raw interrupt bit turns to high level when level 1 FIFO

of TX channel 0 is overflow. (R/WTC/SS)

GDMA_OUTFIFO_UDF_CH0_INT_RAW This raw interrupt bit turns to high level when level 1 FIFO

of TX channel 0 is underflow. (R/WTC/SS)

Espressif Systems 60
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.2. GDMA_INT_ST_CH0_REG (0x0004)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GD
M
A_
OU
TF
IFO
_U
DF
_C
H0
_IN
T_
ST

0

12

GD
M
A_
OU
TF
IFO
_O
VF
_C
H0
_IN
T_
ST

0

11

GD
M
A_
IN
FIF
O_
UD
F_
CH
0_
IN
T_
ST

0

10

GD
M
A_
IN
FIF
O_
OV
F_
CH
0_
IN
T_
ST

0

9

GD
M
A_
OU
T_
TO
TA
L_
EO
F_
CH
0_
IN
T_
ST

0

8

GD
M
A_
IN
_D
SC
R_
EM
PT
Y_
CH
0_
IN
T_
ST

0

7

GD
M
A_
OU
T_
DS
CR
_E
RR
_C
H0
_IN
T_
ST

0

6

GD
M
A_
IN
_D
SC
R_
ER
R_
CH
0_
IN
T_
ST

0

5

GD
M
A_
OU
T_
EO
F_
CH
0_
IN
T_
ST

0

4

GD
M
A_
OU
T_
DO
NE
_C
H0
_IN
T_
ST

0

3

GD
M
A_
IN
_E
RR
_E
OF
_C
H0
_IN
T_
ST

0

2

GD
M
A_
IN
_S
UC
_E
OF
_C
H0
_IN
T_
ST

0

1

GD
M
A_
IN
_D
ON
E_
CH
0_
IN
T_
ST

0

0

Reset

GDMA_IN_DONE_CH0_INT_ST The raw interrupt status bit for the GDMA_IN_DONE_CH_INT inter-

rupt. (RO)

GDMA_IN_SUC_EOF_CH0_INT_ST The raw interrupt status bit for the

GDMA_IN_SUC_EOF_CH_INT interrupt. (RO)

GDMA_IN_ERR_EOF_CH0_INT_ST The raw interrupt status bit for the

GDMA_IN_ERR_EOF_CH_INT interrupt. (RO)

GDMA_OUT_DONE_CH0_INT_ST The raw interrupt status bit for the GDMA_OUT_DONE_CH_INT

interrupt. (RO)

GDMA_OUT_EOF_CH0_INT_ST The raw interrupt status bit for the GDMA_OUT_EOF_CH_INT in-

terrupt. (RO)

GDMA_IN_DSCR_ERR_CH0_INT_ST The raw interrupt status bit for the

GDMA_IN_DSCR_ERR_CH_INT interrupt. (RO)

GDMA_OUT_DSCR_ERR_CH0_INT_ST The raw interrupt status bit for the

GDMA_OUT_DSCR_ERR_CH_INT interrupt. (RO)

GDMA_IN_DSCR_EMPTY_CH0_INT_ST The raw interrupt status bit for the

GDMA_IN_DSCR_EMPTY_CH_INT interrupt. (RO)

GDMA_OUT_TOTAL_EOF_CH0_INT_ST The raw interrupt status bit for the

GDMA_OUT_TOTAL_EOF_CH_INT interrupt. (RO)

GDMA_INFIFO_OVF_CH0_INT_ST The raw interrupt status bit for the

GDMA_INFIFO_OVF_L1_CH_INT interrupt. (RO)

GDMA_INFIFO_UDF_CH0_INT_ST The raw interrupt status bit for the

GDMA_INFIFO_UDF_L1_CH_INT interrupt. (RO)

GDMA_OUTFIFO_OVF_CH0_INT_ST The raw interrupt status bit for the

GDMA_OUTFIFO_OVF_L1_CH_INT interrupt. (RO)

GDMA_OUTFIFO_UDF_CH0_INT_ST The raw interrupt status bit for the

GDMA_OUTFIFO_UDF_L1_CH_INT interrupt. (RO)

Espressif Systems 61
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.3. GDMA_INT_ENA_CH0_REG (0x0008)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GD
M
A_
OU
TF
IFO
_U
DF
_C
H0
_IN
T_
EN
A

0

12

GD
M
A_
OU
TF
IFO
_O
VF
_C
H0
_IN
T_
EN
A

0

11

GD
M
A_
IN
FIF
O_
UD
F_
CH
0_
IN
T_
EN
A

0

10

GD
M
A_
IN
FIF
O_
OV
F_
CH
0_
IN
T_
EN
A

0

9

GD
M
A_
OU
T_
TO
TA
L_
EO
F_
CH
0_
IN
T_
EN
A

0

8

GD
M
A_
IN
_D
SC
R_
EM
PT
Y_
CH
0_
IN
T_
EN
A

0

7

GD
M
A_
OU
T_
DS
CR
_E
RR
_C
H0
_IN
T_
EN
A

0

6

GD
M
A_
IN
_D
SC
R_
ER
R_
CH
0_
IN
T_
EN
A

0

5

GD
M
A_
OU
T_
EO
F_
CH
0_
IN
T_
EN
A

0

4

GD
M
A_
OU
T_
DO
NE
_C
H0
_IN
T_
EN
A

0

3

GD
M
A_
IN
_E
RR
_E
OF
_C
H0
_IN
T_
EN
A

0

2

GD
M
A_
IN
_S
UC
_E
OF
_C
H0
_IN
T_
EN
A

0

1

GD
M
A_
IN
_D
ON
E_
CH
0_
IN
T_
EN
A

0

0

Reset

GDMA_IN_DONE_CH0_INT_ENA The interrupt enable bit for the GDMA_IN_DONE_CH_INT inter-

rupt. (R/W)

GDMA_IN_SUC_EOF_CH0_INT_ENA The interrupt enable bit for the GDMA_IN_SUC_EOF_CH_INT

interrupt. (R/W)

GDMA_IN_ERR_EOF_CH0_INT_ENA The interrupt enable bit for the GDMA_IN_ERR_EOF_CH_INT

interrupt. (R/W)

GDMA_OUT_DONE_CH0_INT_ENA The interrupt enable bit for the GDMA_OUT_DONE_CH_INT in-

terrupt. (R/W)

GDMA_OUT_EOF_CH0_INT_ENA The interrupt enable bit for the GDMA_OUT_EOF_CH_INT inter-

rupt. (R/W)

GDMA_IN_DSCR_ERR_CH0_INT_ENA The interrupt enable bit for the

GDMA_IN_DSCR_ERR_CH_INT interrupt. (R/W)

GDMA_OUT_DSCR_ERR_CH0_INT_ENA The interrupt enable bit for the

GDMA_OUT_DSCR_ERR_CH_INT interrupt. (R/W)

GDMA_IN_DSCR_EMPTY_CH0_INT_ENA The interrupt enable bit for the

GDMA_IN_DSCR_EMPTY_CH_INT interrupt. (R/W)

GDMA_OUT_TOTAL_EOF_CH0_INT_ENA The interrupt enable bit for the

GDMA_OUT_TOTAL_EOF_CH_INT interrupt. (R/W)

GDMA_INFIFO_OVF_CH0_INT_ENA The interrupt enable bit for the

GDMA_INFIFO_OVF_L1_CH_INT interrupt. (R/W)

GDMA_INFIFO_UDF_CH0_INT_ENA The interrupt enable bit for the

GDMA_INFIFO_UDF_L1_CH_INT interrupt. (R/W)

GDMA_OUTFIFO_OVF_CH0_INT_ENA The interrupt enable bit for the

GDMA_OUTFIFO_OVF_L1_CH_INT interrupt. (R/W)

GDMA_OUTFIFO_UDF_CH0_INT_ENA The interrupt enable bit for the

GDMA_OUTFIFO_UDF_L1_CH_INT interrupt. (R/W)

Espressif Systems 62
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.4. GDMA_INT_CLR_CH0_REG (0x000C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GD
M
A_
OU
TF
IFO
_U
DF
_C
H0
_IN
T_
CL
R

0

12

GD
M
A_
OU
TF
IFO
_O
VF
_C
H0
_IN
T_
CL
R

0

11

GD
M
A_
IN
FIF
O_
UD
F_
CH
0_
IN
T_
CL
R

0

10

GD
M
A_
IN
FIF
O_
OV
F_
CH
0_
IN
T_
CL
R

0

9

GD
M
A_
OU
T_
TO
TA
L_
EO
F_
CH
0_
IN
T_
CL
R

0

8

GD
M
A_
IN
_D
SC
R_
EM
PT
Y_
CH
0_
IN
T_
CL
R

0

7

GD
M
A_
OU
T_
DS
CR
_E
RR
_C
H0
_IN
T_
CL
R

0

6

GD
M
A_
IN
_D
SC
R_
ER
R_
CH
0_
IN
T_
CL
R

0

5

GD
M
A_
OU
T_
EO
F_
CH
0_
IN
T_
CL
R

0

4

GD
M
A_
OU
T_
DO
NE
_C
H0
_IN
T_
CL
R

0

3

GD
M
A_
IN
_E
RR
_E
OF
_C
H0
_IN
T_
CL
R

0

2

GD
M
A_
IN
_S
UC
_E
OF
_C
H0
_IN
T_
CL
R

0

1

GD
M
A_
IN
_D
ON
E_
CH
0_
IN
T_
CL
R

0

0

Reset

GDMA_IN_DONE_CH0_INT_CLR Set this bit to clear the GDMA_IN_DONE_CH_INT interrupt. (WT)

GDMA_IN_SUC_EOF_CH0_INT_CLR Set this bit to clear the GDMA_IN_SUC_EOF_CH_INT inter-

rupt. (WT)

GDMA_IN_ERR_EOF_CH0_INT_CLR Set this bit to clear the GDMA_IN_ERR_EOF_CH_INT inter-

rupt. (WT)

GDMA_OUT_DONE_CH0_INT_CLR Set this bit to clear the GDMA_OUT_DONE_CH_INT interrupt.

(WT)

GDMA_OUT_EOF_CH0_INT_CLR Set this bit to clear the GDMA_OUT_EOF_CH_INT interrupt. (WT)

GDMA_IN_DSCR_ERR_CH0_INT_CLR Set this bit to clear the GDMA_IN_DSCR_ERR_CH_INT in-

terrupt. (WT)

GDMA_OUT_DSCR_ERR_CH0_INT_CLR Set this bit to clear the

GDMA_OUT_DSCR_ERR_CH_INT interrupt. (WT)

GDMA_IN_DSCR_EMPTY_CH0_INT_CLR Set this bit to clear the

GDMA_IN_DSCR_EMPTY_CH_INT interrupt. (WT)

GDMA_OUT_TOTAL_EOF_CH0_INT_CLR Set this bit to clear the

GDMA_OUT_TOTAL_EOF_CH_INT interrupt. (WT)

GDMA_INFIFO_OVF_CH0_INT_CLR Set this bit to clear the GDMA_INFIFO_OVF_L1_CH_INT inter-

rupt. (WT)

GDMA_INFIFO_UDF_CH0_INT_CLR Set this bit to clear the GDMA_INFIFO_UDF_L1_CH_INT inter-

rupt. (WT)

GDMA_OUTFIFO_OVF_CH0_INT_CLR Set this bit to clear the GDMA_OUTFIFO_OVF_L1_CH_INT

interrupt. (WT)

GDMA_OUTFIFO_UDF_CH0_INT_CLR Set this bit to clear the GDMA_OUTFIFO_UDF_L1_CH_INT

interrupt. (WT)

Espressif Systems 63
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.5. GDMA_MISC_CONF_REG (0x0044)

(re
se
rve
d)

0 0

31 4

GD
M
A_
CL
K_
EN

0

3

GD
M
A_
AR
B_
PR
I_D
IS

0

2

(re
se
rve
d)

0

1

GD
M
A_
AH
BM
_R
ST
_IN
TE
R

0

0

Reset

GDMA_AHBM_RST_INTER Set this bit, then clear this bit to reset the internal ahb FSM. (R/W)

GDMA_ARB_PRI_DIS Set this bit to disable priority arbitration function. (R/W)

GDMA_CLK_EN 0: Enable the clock only when application writes registers. 1: Force the clock on

for registers. (R/W)

Register 2.6. GDMA_IN_CONF0_CH0_REG (0x0070)

(re
se
rve
d)

0 0

31 5

GD
M
A_
M
EM
_T
RA
NS
_E
N_
CH
0

0

4

GD
M
A_
IN
_D
AT
A_
BU
RS
T_
EN
_C
H0

0

3

GD
M
A_
IN
DS
CR
_B
UR
ST
_E
N_
CH
0

0

2

GD
M
A_
IN
_L
OO
P_
TE
ST
_C
H0

0

1

GD
M
A_
IN
_R
ST
_C
H0

0

0

Reset

GDMA_IN_RST_CH0 This bit is used to reset GDMA channel 0 RX FSM and RX FIFO pointer. (R/W)

GDMA_IN_LOOP_TEST_CH0 Reserved. (R/W)

GDMA_INDSCR_BURST_EN_CH0 Set this bit to 1 to enable INCR burst transfer for RX channel 0

reading descriptor when accessing internal RAM. (R/W)

GDMA_IN_DATA_BURST_EN_CH0 Set this bit to 1 to enable INCR burst transfer for RX channel 0

receiving data when accessing internal RAM. (R/W)

GDMA_MEM_TRANS_EN_CH0 Set this bit 1 to enable automatic transmitting data from memory to

memory via GDMA. (R/W)

Espressif Systems 64
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.7. GDMA_IN_CONF1_CH0_REG (0x0074)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GD
M
A_
IN
_C
HE
CK
_O
W
NE
R_
CH
0

0

12

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

GDMA_IN_CHECK_OWNER_CH0 Set this bit to enable checking the owner attribute of the descrip-

tor. (R/W)

Register 2.8. GDMA_IN_POP_CH0_REG (0x007C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GD
M
A_
IN
FIF
O_
PO
P_
CH
0

0

12

GD
M
A_
IN
FIF
O_
RD
AT
A_
CH
0

0x800

11 0

Reset

GDMA_INFIFO_RDATA_CH0 This register stores the data popping from GDMA FIFO (intended for

debugging). (RO)

GDMA_INFIFO_POP_CH0 Set this bit to pop data from GDMA FIFO (intended for debugging).

(R/W/SC)

Espressif Systems 65
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.9. GDMA_IN_LINK_CH0_REG (0x0080)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GD
M
A_
IN
LIN
K_
PA
RK
_C
H0

1

24

GD
M
A_
IN
LIN
K_
RE
ST
AR
T_
CH
0

0

23

GD
M
A_
IN
LIN
K_
ST
AR
T_
CH
0

0

22

GD
M
A_
IN
LIN
K_
ST
OP
_C
H0

0

21

GD
M
A_
IN
LIN
K_
AU
TO
_R
ET
_C
H0

1

20

GD
M
A_
IN
LIN
K_
AD
DR
_C
H0

0x000

19 0

Reset

GDMA_INLINK_ADDR_CH0 This register stores the 20 least significant bits of the first receive de-

scriptor’s address. (R/W)

GDMA_INLINK_AUTO_RET_CH0 Set this bit to return to current receive descriptor’s address, when

there are some errors in current receiving data. (R/W)

GDMA_INLINK_STOP_CH0 Set this bit to stop GDMA’s receive channel from receiving data.

(R/W/SC)

GDMA_INLINK_START_CH0 Set this bit to enable GDMA’s receive channel for data transfer.

(R/W/SC)

GDMA_INLINK_RESTART_CH0 Set this bit to mount a new receive descriptor. (R/W/SC)

GDMA_INLINK_PARK_CH0 1: the receive descriptor’s FSM is in idle state. 0: the receive descriptor’s

FSM is working. (RO)

Espressif Systems 66
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.10. GDMA_OUT_CONF0_CH0_REG (0x00D0)

(re
se
rve
d)

0 0

31 6

GD
M
A_
OU
T_
DA
TA
_B
UR
ST
_E
N_
CH
0

0

5

GD
M
A_
OU
TD
SC
R_
BU
RS
T_
EN
_C
H0

0

4

GD
M
A_
OU
T_
EO
F_
M
OD
E_
CH
0

1

3

GD
M
A_
OU
T_
AU
TO
_W
RB
AC
K_
CH
0

0

2

GD
M
A_
OU
T_
LO
OP
_T
ES
T_
CH
0

0

1

GD
M
A_
OU
T_
RS
T_
CH
0

0

0

Reset

GDMA_OUT_RST_CH0 This bit is used to reset GDMA channel 0 TX FSM and TX FIFO pointer. (R/W)

GDMA_OUT_LOOP_TEST_CH0 Reserved. (R/W)

GDMA_OUT_AUTO_WRBACK_CH0 Set this bit to enable automatic outlink-writeback when all the

data in TX buffer has been transmitted. (R/W)

GDMA_OUT_EOF_MODE_CH0 EOF flag generation mode when transmitting data. 1: EOF flag for

TX channel 0 is generated when data need to transmit has been popped from FIFO in GDMA.

(R/W)

GDMA_OUTDSCR_BURST_EN_CH0 Set this bit to 1 to enable INCR burst transfer for TX channel

0 reading descriptor when accessing internal RAM. (R/W)

GDMA_OUT_DATA_BURST_EN_CH0 Set this bit to 1 to enable INCR burst transfer for TX channel

0 transmitting data when accessing internal RAM. (R/W)

Register 2.11. GDMA_OUT_CONF1_CH0_REG (0x00D4)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

GD
M
A_
OU
T_
CH
EC
K_
OW

NE
R_
CH
0

0

12

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

GDMA_OUT_CHECK_OWNER_CH0 Set this bit to enable checking the owner attribute of the de-

scriptor. (R/W)

Espressif Systems 67
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.12. GDMA_OUT_PUSH_CH0_REG (0x00DC)

(re
se
rve
d)

0 0

31 10

GD
M
A_
OU
TF
IFO
_P
US
H_
CH
0

0

9

GD
M
A_
OU
TF
IFO
_W
DA
TA
_C
H0

0x0

8 0

Reset

GDMA_OUTFIFO_WDATA_CH0 This register stores the data that need to be pushed into GDMA

FIFO. (R/W)

GDMA_OUTFIFO_PUSH_CH0 Set this bit to push data into GDMA FIFO. (R/W/SC)

Register 2.13. GDMA_OUT_LINK_CH0_REG (0x00E0)

(re
se
rve
d)

0 0 0 0 0 0 0 0

31 24

GD
M
A_
OU
TL
IN
K_
PA
RK
_C
H0

1

23

GD
M
A_
OU
TL
IN
K_
RE
ST
AR
T_
CH
0

0

22

GD
M
A_
OU
TL
IN
K_
ST
AR
T_
CH
0

0

21

GD
M
A_
OU
TL
IN
K_
ST
OP
_C
H0

0

20

GD
M
A_
OU
TL
IN
K_
AD
DR
_C
H0

0x000

19 0

Reset

GDMA_OUTLINK_ADDR_CH0 This register stores the 20 least significant bits of the first transmit

descriptor’s address. (R/W)

GDMA_OUTLINK_STOP_CH0 Set this bit to stop GDMA’s receive channel from receiving data.

(R/W/SC)

GDMA_OUTLINK_START_CH0 Set this bit to enable GDMA’s transmit channel for data transfer.

(R/W/SC)

GDMA_OUTLINK_RESTART_CH0 Set this bit to restart a new outlink from the last address.

(R/W/SC)

GDMA_OUTLINK_PARK_CH0 1: the transmit descriptor’s FSM is in idle state. 0: the transmit de-

scriptor’s FSM is working. (RO)

Espressif Systems 68
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.14. GDMA_INFIFO_STATUS_CH0_REG (0x0078)

(re
se
rve
d)

0 0 0 0

31 28

GD
M
A_
IN
_B
UF
_H
UN
GR
Y_
CH
0

0

27

GD
M
A_
IN
_R
EM
AI
N_
UN
DE
R_
4B
_C
H0

1

26

GD
M
A_
IN
_R
EM
AI
N_
UN
DE
R_
3B
_C
H0

1

25

GD
M
A_
IN
_R
EM
AI
N_
UN
DE
R_
2B
_C
H0

1

24

GD
M
A_
IN
_R
EM
AI
N_
UN
DE
R_
1B
_C
H0

1

23

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 8

GD
M
A_
IN
FIF
O_
CN
T_
CH
0

0

7 2

GD
M
A_
IN
FIF
O_
EM
PT
Y_
CH
0

1

1

GD
M
A_
IN
FIF
O_
FU
LL
_C
H0

1

0

Reset

GDMA_INFIFO_FULL_CH0 L1 RX FIFO full signal for RX channel 0. (RO)

GDMA_INFIFO_EMPTY_CH0 L1 RX FIFO empty signal for RX channel 0. (RO)

GDMA_INFIFO_CNT_CH0 The register stores the byte number of the data in L1 RX FIFO for RX

channel 0. (RO)

GDMA_IN_REMAIN_UNDER_1B_CH0 Reserved. (RO)

GDMA_IN_REMAIN_UNDER_2B_CH0 Reserved. (RO)

GDMA_IN_REMAIN_UNDER_3B_CH0 Reserved. (RO)

GDMA_IN_REMAIN_UNDER_4B_CH0 Reserved. (RO)

GDMA_IN_BUF_HUNGRY_CH0 Reserved. (RO)

Register 2.15. GDMA_IN_STATE_CH0_REG (0x0084)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0

31 23

GD
M
A_
IN
_S
TA
TE
_C
H0

0

22 20

GD
M
A_
IN
_D
SC
R_
ST
AT
E_
CH
0

0

19 18

GD
M
A_
IN
LIN
K_
DS
CR
_A
DD
R_
CH
0

0

17 0

Reset

GDMA_INLINK_DSCR_ADDR_CH0 This register stores the current receive descriptor’s address.

(RO)

GDMA_IN_DSCR_STATE_CH0 Reserved. (RO)

GDMA_IN_STATE_CH0 Reserved. (RO)

Espressif Systems 69
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.16. GDMA_IN_SUC_EOF_DES_ADDR_CH0_REG (0x0088)

GD
M
A_
IN
_S
UC
_E
OF
_D
ES
_A
DD
R_
CH
0

0x000000

31 0

Reset

GDMA_IN_SUC_EOF_DES_ADDR_CH0 This register stores the address of the receive descriptor

when the EOF bit in this descriptor is 1. (RO)

Register 2.17. GDMA_IN_ERR_EOF_DES_ADDR_CH0_REG (0x008C)

GD
M
A_
IN
_E
RR
_E
OF
_D
ES
_A
DD
R_
CH
0

0x000000

31 0

Reset

GDMA_IN_ERR_EOF_DES_ADDR_CH0 Reserved. (RO)

Register 2.18. GDMA_IN_DSCR_CH0_REG (0x0090)

GD
M
A_
IN
LIN
K_
DS
CR
_C
H0

0

31 0

Reset

GDMA_INLINK_DSCR_CH0 The address of the current receive descriptor x. (RO)

Espressif Systems 70
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.19. GDMA_IN_DSCR_BF0_CH0_REG (0x0094)

GD
M
A_
IN
LIN
K_
DS
CR
_B
F0
_C
H0

0

31 0

Reset

GDMA_INLINK_DSCR_BF0_CH0 The address of the last receive descriptor x-1. (RO)

Register 2.20. GDMA_IN_DSCR_BF1_CH0_REG (0x0098)

GD
M
A_
IN
LIN
K_
DS
CR
_B
F1
_C
H0

0

31 0

Reset

GDMA_INLINK_DSCR_BF1_CH0 The address of the second-to-last receive descriptor x-2. (RO)

Espressif Systems 71
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.21. GDMA_OUTFIFO_STATUS_CH0_REG (0x00D8)

(re
se
rve
d)

0 0 0 0 0

31 27

GD
M
A_
OU
T_
RE
M
AI
N_
UN
DE
R_
4B
_C
H0

1

26

GD
M
A_
OU
T_
RE
M
AI
N_
UN
DE
R_
3B
_C
H0

1

25

GD
M
A_
OU
T_
RE
M
AI
N_
UN
DE
R_
2B
_C
H0

1

24

GD
M
A_
OU
T_
RE
M
AI
N_
UN
DE
R_
1B
_C
H0

1

23

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 8

GD
M
A_
OU
TF
IFO
_C
NT
_C
H0

0

7 2

GD
M
A_
OU
TF
IFO
_E
M
PT
Y_
CH
0

1

1

GD
M
A_
OU
TF
IFO
_F
UL
L_
CH
0

0

0

Reset

GDMA_OUTFIFO_FULL_CH0 L1 TX FIFO full signal for TX channel 0. (RO)

GDMA_OUTFIFO_EMPTY_CH0 L1 TX FIFO empty signal for TX channel 0. (RO)

GDMA_OUTFIFO_CNT_CH0 The register stores the byte number of the data in L1 TX FIFO for TX

channel 0. (RO)

GDMA_OUT_REMAIN_UNDER_1B_CH0 Reserved. (RO)

GDMA_OUT_REMAIN_UNDER_2B_CH0 Reserved. (RO)

GDMA_OUT_REMAIN_UNDER_3B_CH0 Reserved. (RO)

GDMA_OUT_REMAIN_UNDER_4B_CH0 Reserved. (RO)

Register 2.22. GDMA_OUT_STATE_CH0_REG (0x00E4)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0

31 23

GD
M
A_
OU
T_
ST
AT
E_
CH
0

0

22 20

GD
M
A_
OU
T_
DS
CR
_S
TA
TE
_C
H0

0

19 18

GD
M
A_
OU
TL
IN
K_
DS
CR
_A
DD
R_
CH
0

0

17 0

Reset

GDMA_OUTLINK_DSCR_ADDR_CH0 This register stores the current transmit descriptor’s address.

(RO)

GDMA_OUT_DSCR_STATE_CH0 Reserved. (RO)

GDMA_OUT_STATE_CH0 Reserved. (RO)

Espressif Systems 72
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.23. GDMA_OUT_EOF_DES_ADDR_CH0_REG (0x00E8)

GD
M
A_
OU
T_
EO
F_
DE
S_
AD
DR
_C
H0

0x000000

31 0

Reset

GDMA_OUT_EOF_DES_ADDR_CH0 This register stores the address of the transmit descriptor when

the EOF bit in this descriptor is 1. (RO)

Register 2.24. GDMA_OUT_EOF_BFR_DES_ADDR_CH0_REG (0x00EC)

GD
M
A_
OU
T_
EO
F_
BF
R_
DE
S_
AD
DR
_C
H0

0x000000

31 0

Reset

GDMA_OUT_EOF_BFR_DES_ADDR_CH0 This register stores the address of the transmit descriptor

before the last transmit descriptor. (RO)

Register 2.25. GDMA_OUT_DSCR_CH0_REG (0x00F0)

GD
M
A_
OU
TL
IN
K_
DS
CR
_C
H0

0

31 0

Reset

GDMA_OUTLINK_DSCR_CH0 The address of the current transmit descriptor y. (RO)

Espressif Systems 73
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.26. GDMA_OUT_DSCR_BF0_CH0_REG (0x00F4)

GD
M
A_
OU
TL
IN
K_
DS
CR
_B
F0
_C
H0

0

31 0

Reset

GDMA_OUTLINK_DSCR_BF0_CH0 The address of the last transmit descriptor y-1. (RO)

Register 2.27. GDMA_OUT_DSCR_BF1_CH0_REG (0x00F8)

GD
M
A_
OU
TL
IN
K_
DS
CR
_B
F1
_C
H0

0

31 0

Reset

GDMA_OUTLINK_DSCR_BF1_CH0 The address of the second-to-last receive descriptor x-2. (RO)

Register 2.28. GDMA_IN_PRI_CH0_REG (0x009C)

(re
se
rve
d)

0 0

31 4

GD
M
A_
RX
_P
RI
_C
H0

0

3 0

Reset

GDMA_RX_PRI_CH0 The priority of RX channel 0. The larger the value, the higher the priority. (R/W)

Espressif Systems 74
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.29. GDMA_OUT_PRI_CH0_REG (0x00FC)

(re
se
rve
d)

0 0

31 4

GD
M
A_
TX
_P
RI
_C
H0

0

3 0

Reset

GDMA_TX_PRI_CH0 The priority of TX channel 0. The larger the value, the higher the priority. (R/W)

Register 2.30. GDMA_IN_PERI_SEL_CH0_REG (0x00A0)

(re
se
rve
d)

0 0

31 6

GD
M
A_
PE
RI
_IN
_S
EL
_C
H0

0x3f

5 0

Reset

GDMA_PERI_IN_SEL_CH0 This register is used to select peripheral for RX channel 0. 0: SPI2. 1:

reserved. 2: reserved. 3: reserved. 4: reserved. 5: reserved. 6: reserved. 7: reserved. 8:

reserved. (R/W)

Register 2.31. GDMA_OUT_PERI_SEL_CH0_REG (0x0100)

(re
se
rve
d)

0 0

31 6

GD
M
A_
PE
RI
_O
UT
_S
EL
_C
H0

0x3f

5 0

Reset

GDMA_PERI_OUT_SEL_CH0 This register is used to select peripheral for TX channel 0. 0:SPI2. 1:

reserved. 2: reserved. 3: reserved. 4: reserved. 5: reserved. 6: reserved. 7: SHA. 8: reserved.

(R/W)

Espressif Systems 75
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

2 GDMA Controller (GDMA) GoBack

Register 2.32. GDMA_DATE_REG (0x0048)

GD
M
A_
DA
TE

0x2105280

31 0

Reset

GDMA_DATE This is the version control register. (R/W)

Espressif Systems 76
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

3 System and Memory GoBack

3 System and Memory

3.1 Overview

The ESP8684 is an ultra-low-power and highly-integrated system with a 32-bit RISC-V single-core processor and

a four-stage pipeline that operates at up to 120 MHz. All internal memory, external memory, and peripherals are

located on the CPU buses.

3.2 Features

ESP8684’s system and memory has the following features:

• Address Space

– 848 KB of internal memory address space accessed from the instruction bus

– 576 KB of internal memory address space accessed from the data bus

– 828 KB of peripheral address space

– 4 MB of external memory virtual address space accessed from the instruction bus

– 4 MB of external memory virtual address space accessed from the data bus

– 576 KB of internal DMA address space

• Internal Memory

– 576 KB of internal ROM

– 272 KB of internal SRAM

• External Memory

– Supports up to 16 MB external flash

• Peripheral Space

– 22 modules/peripherals in total

• GDMA

– 2 GDMA-supported modules/peripherals

Figure 3-1 illustrates the system structure and address mapping.

Espressif Systems 77
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

3 System and Memory GoBack

0x0000_0000
 0x3BFF_FFFF

0x3C00_0000
0x3C3F_FFFF

0x3C40_0000
0x3FC9_FFFF

0x3FCA_0000
0x3FCD_FFFF

0x3FCE_0000
0x3FEF_FFFF

0x3FF0_0000
0x3FF4_FFFF

0x3FF5_0000
0x3FFF_FFFF

0x4000_0000
0x4008_FFFF

0x4009_0000
0x4037_BFFF

0x4037_C000
0x403B_FFFF

0x403C_0000
0x41FF_FFFF

0x4200_0000
0x423F_FFFF

0x4240_0000
0x5FFF_FFFF

0x6000_0000
0x600C_EFFF

0x600C_F000
0xFFFF_FFFF

Cache

MMU

External
memory

Reserved

4 MB
External memory

Reserved

256 KB
Internal memory

Reserved

320 KB
Internal memory

Reserved

576 KB
Internal memory

Reserved

272 KB
Internal memory

Reserved

4 MB
External memory

Reserved

828 KB
Peripherals

Reserved

ROM

GDMA

Peripheral

SRAM

Data bus

Data bus

Data bus

Instruction bus

Instruction bus

Instruction bus

Peripheral bus

Figure 3­1. System Structure and Address Mapping

Note:

• The address space with gray background is not available to users.

• The range of addresses available in the address space may be larger than the actual available memory of a particular

type.

3.3 Functional Description

3.3.1 Address Mapping

Addresses below 0x4000_0000 are accessed using the data bus. Addresses in the range of 0x4000_0000 ~
0x4FFF_FFFF are accessed using the instruction bus. Addresses over and including 0x5000_0000 are accessed

using the peripheral bus.

Both the data bus and instruction bus are little-endian. The CPU can access data via the data bus using

single-byte, double-byte, four-byte alignment. The CPU can also access data via the instruction bus, but only in

four-byte aligned manner.

The CPU can:

• directly access the internal memory via both the data bus and instruction bus;

• access the external memory which is mapped into the virtual address space via cache;

Espressif Systems 78
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

3 System and Memory GoBack

• directly access modules/peripherals via the peripheral bus.

Figure 3-1 shows the address ranges on the data bus, instruction bus and peripheral bus as well as their

corresponding target memory.

Some internal and external memory can be accessed via both the data bus and instruction bus. In such cases,

the CPU can access the same memory using multiple addresses.

3.3.2 Internal Memory

The ESP8684 consists of the following two types of internal memory:

• Internal ROM (576 KB): The Internal ROM of the ESP8684 is a read-only memory which cannot be

programmed. Internal ROM contains the ROM code (software instructions and some software read-only

data) of some low-level system software.

• Internal SRAM (272 KB): The Internal Static RAM (SRAM) is a volatile memory that can be quickly accessed

by the CPU (generally within a single CPU clock cycle).

– A part of the SRAM can be configured to operate as a cache for external memory access.

– Some parts of the SRAM can only be accessed via the CPU’s instruction bus.

– Some parts of the SRAM can be accessed via both the CPU’s instruction bus and the CPU’s data bus.

Based on the two different types of internal memory described above, the internal memory of the ESP8684 is

split into two segments: Internal ROM (576 KB) and Internal SRAM (272 KB).

However, within each segment, there may be different bus access restrictions (e.g., some parts of the segment

may only be accessible by the CPU’s data bus). Therefore, segments are also further divided into parts. Table

3-1 describes each part of internal memory and their address ranges on the data bus and instruction bus.

Table 3­1. Internal Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size (KB) Target

Data bus
0x3FF0_0000 0x3FF4_FFFF 320 Internal ROM 1

0x3FCA_0000 0x3FCD_FFFF 256 Internal SRAM 1

Instruction bus

0x4000_0000 0x4003_FFFF 256 Internal ROM 0

0x4004_0000 0x4008_FFFF 320 Internal ROM 1

0x4037_C000 0x4037_FFFF 16 Internal SRAM 0

0x4038_0000 0x403B_FFFF 256 Internal SRAM 1

1. Internal ROM 0

Internal ROM 0 is a 256 KB, read-only memory space, addressed by the CPU only through the instruction bus via

0x4000_0000 ~ 0x4003_FFFF, as shown in Table 3-1.

2. Internal ROM 1

Internal ROM 1 is a 320 KB, read-only memory space, addressed by the CPU through the instruction bus via

0x4004_0000 ~ 0x4008_FFFF or through the data bus via 0x3FF0_0000 ~ 0x3FF4_FFFF in the same order, as

shown in Table 3-1.

This means, for example, address 04004_0000 and 0x3FF0_0000 correspond to the same word, 0x4004_0004

Espressif Systems 79
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

3 System and Memory GoBack

and 0x3FF0_0004 correspond to the same word, 0x4004_0008 and 0x3FF0_0008 correspond to the same

word, etc.

3. Internal SRAM 0

Internal SRAM 0 is a 16 KB, read-and-write memory space, addressed by the CPU through the instruction bus

via the range described in Table 3-1.

This memory can be configured as instruction cache to store cache instructions or read-only data of the external

memory. In this case, the configured memory cannot be accessed by the CPU.

4. Internal SRAM 1

Internal SRAM 1 is a 256 KB, read-and-write memory space, addressed by the CPU through the data bus or

instruction bus, in the same order (the same meaning as the explanation in 3.3.2 Internal ROM 1), via the ranges

described in Table 3-1.

3.3.3 External Memory

ESP8684 supports SPI, Dual SPI, Quad SPI, and QPI interfaces that allow connection to multiple external flash

chips. The chip supports hardware manual encryption and automatic decryption based on XTS-AES algorithm to

protect user programs and data in the external flash.

3.3.3.1 External Memory Address Mapping

The CPU accesses the external memory via the cache. According to the MMU (Memory Management Unit)

settings, the cache maps the CPU’s address to the external memory’s physical address. Due to this address

mapping, the ESP8684 can address up to 16 MB external flash.

Using the cache, ESP8684 is able to support the following address space mappings. Note that the instruction

bus address space (4 MB) and the data bus address space (4 MB) is always shared.

• Up to 4 MB instruction bus address space can be mapped into the external flash. The mapped address

space is organized as individual 64-KB blocks.

• Up to 4 MB data bus (read-only) address space can be mapped into the external flash. The mapped

address space is organized as individual 64-KB blocks.

Table 3-2 lists the mapping between the cache and the corresponding address ranges on the data bus and

instruction bus.

Table 3­2. External Memory Address Mapping

Boundary Address
Bus Type

Low Address High Address
Size (MB) Target

Data bus (read-only) 0x3C00_0000 0x3C3F_FFFF 4 Uniform Cache

Instruction bus 0x4200_0000 0x423F_FFFF 4 Uniform Cache

3.3.3.2 Cache

As shown in Figure 3-2, ESP8684 has a read-only uniform cache which is eight-way set-associative, its size is 16

KB and its block size is 32 bytes. When cache is active, some internal memory space will be occupied by cache

(see Internal SRAM 0 in Section 3.3.2).

Espressif Systems 80
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

3 System and Memory GoBack

The uniform cache is accessible by the instruction bus and the data bus at the same time, but can only respond

to one of them at a time. When a cache miss occurs, the cache controller will initiate a request to the external

memory.

Figure 3­2. Cache Structure

3.3.3.3 Cache Operations

ESP8684 cache supports the following operations:

1. Invalidate: This operation is used to clear valid data in the cache. After this operation is completed, the

data will only be stored in the external memory. The CPU needs to access the external memory in order to

read this data. There are two types of invalidate-operation: automatic invalidation (Auto-Invalidate) and

manual invalidation (Manual-Invalidate). Manual-Invalidate is performed only on data in the specified area in

the cache, while Auto-Invalidate is performed on all data in the cache.

2. Preload: This operation is used to load instructions and data into the cache in advance. The minimum unit

of preload-operation is one block (32 bytes). There are two types of preload-operation: manual preload

(Manual-Preload) and automatic preload (Auto-Preload). Manual-Preload means that the hardware

prefetches a piece of continuous data according to the virtual address specified by the software.

Auto-Preload means the hardware prefetches a piece of continuous data according to the current address

where the cache hits or misses (depending on configuration).

3. Lock/Unlock: The lock operation is used to prevent the data in the cache from being easily replaced.

There are two types of lock: prelock and manual lock. When prelock is enabled, the cache locks the data

in the specified area when filling the missing data to cache memory, while the data outside the specified

area will not be locked. When manual lock is enabled, the cache checks the data that is already in the

cache memory and only locks the data in the specified area, and leaves the data outside the specified area

unlocked. When there are missing data, the cache will replace the data in the unlocked way first, so the

data in the locked way is always stored in the cache and will not be replaced. But when all ways within the

cache are locked, the cache will replace data, as if it was not locked. Unlocking is the reverse of locking,

except that it only can be done manually.

Please note that the Manual-Invalidate operations will only work on the unlocked data. If you expect to

perform such operation on the locked data, please unlock them first.

Espressif Systems 81
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

3 System and Memory GoBack

3.3.4 GDMA Address Space

The GDMA (General Direct Memory Access) peripheral in ESP8684 can provide DMA (Direct Memory Access)

services including:

• Data transfers between different locations of internal memory;

• Data transfers between modules/peripherals and internal memory.

The GDMA can read and write to Internal SRAM 1 via the same address as the data bus. Specifically, GDMA

accesses Internal SRAM 1 via 0x3FCA_0000 ~ 0x3FCD_FFFF. Note that GDMA cannot access the internal

memory occupied by the cache.

There are two peripherals/modules that can work together with GDMA, i.e., SPI2 and SHA Accelerator. These

two peripherals share one channel in GDMA and cannot enable GDMA function at the same time.

Peripherals/modules with GDMA function can access any memory available to GDMA. For more information,

please refer to Chapter 2 GDMA Controller (GDMA).

3.3.5 Modules/Peripherals

The CPU can access modules/peripherals via 0x6000_0000 ~ 0x600C_EFFF shared by the peripheral

bus.

3.3.5.1 Module/Peripheral Address Mapping

Table 3-3 lists all the modules/peripherals and their respective address ranges. Note that the address space of

specific modules/peripherals is defined by ”Boundary Address” (including both Low Address and High

Address).

Table 3­3. Module/Peripheral Address Mapping

Boundary Address
Target

Low Address High Address
Size (KB) Notes

UART Controller 0 0x6000_0000 0x6000_0FFF 4

Reserved 0x6000_1000 0x6000_1FFF

SPI Controller 1 0x6000_2000 0x6000_2FFF 4

SPI Controller 0 0x6000_3000 0x6000_3FFF 4

GPIO 0x6000_4000 0x6000_4FFF 4

Reserved 0x6000_5000 0x6000_7FFF

Low-Power Management 0x6000_8000 0x6000_8FFF 4

IO MUX 0x6000_9000 0x6000_9FFF 4

Reserved 0x6000_A000 0x6000_CFFF

MISC 0x6000_D000 0x6000_DFFF 4

Reserved 0x6000_E000 0x6000_FFFF

UART Controller 1 0x6001_0000 0x6001_0FFF 4

Reserved 0x6001_1000 0x6001_2FFF

I2C Controller 0x6001_3000 0x6001_3FFF 4

Reserved 0x6001_4000 0x6001_8FFF

LED PWM Controller 0x6001_9000 0x6001_9FFF 4

���

Espressif Systems 82
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

3 System and Memory GoBack

Table 3­3 – ���

Boundary Address
Target

Low Address High Address
Size (KB) Notes

Reserved 0x6001_A000 0x6001_EFFF

Timer Group 0 0x6001_F000 0x6001_FFFF 4

Reserved 0x6002_0000 0x6002_2FFF

System Timer 0x6002_3000 0x6002_3FFF 4

SPI Controller 2 0x6002_4000 0x6002_4FFF 4

Reserved 0x6002_5000 0x6002_5FFF

APB Controller 0x6002_6000 0x6002_6FFF 4

Reserved 0x6002_7000 0x6003_AFFF

SHA Accelerator 0x6003_B000 0x6003_BFFF 4

ECC Accelerator 0x6003_E000 0x6003_EFFF 4

Reserved 0x6002_C000 0x6003_EFFF

GDMA Controller 0x6003_F000 0x6003_FFFF 4

ADC Controller 0x6004_0000 0x6004_0FFF 4

Reserved 0x6004_1000 0x600B_FFFF

System Registers 0x600C_0000 0x600C_0FFF 4

Sensitive Register 0x600C_1000 0x600C_1FFF 4

Interrupt Matrix 0x600C_2000 0x600C_2FFF 4

Reserved 0x600C_3000 0x600C_3FFF

Configure Cache 0x600C_4000 0x600C_DFFF 40

Reserved 0x600C_E000 0x600C_DFFF

Debug Assist 0x600C_E000 0x600C_EFFF 4

Espressif Systems 83
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

4 eFuse Controller (eFuse)

4.1 Overview

ESP8684 contains a 1024-bit eFuse memory to store parameters and user data. The parameters include control

parameters for some hardware modules, system data parameters and keys used for the decryption module.

Once an eFuse bit is programmed to 1, it can never be reverted to 0. The eFuse controller programs individual

bits of parameters in eFuse according to user configurations. From outside the chip, eFuse data can only be read

via the eFuse Controller. If read-protection for some data is not enabled, that data is readable from outside the

chip. If read-protection is enabled, that data can not be read from outside the chip. In all cases, however, some

keys stored in eFuse can still be used internally by hardware cryptography modules such as Digital Signature,

HMAC, etc., without exposing this data to the outside world.

4.2 Features

The eFuse controller has the following features:

• 1024-bit one-time programmable storage, in which 256-bit is reserved for users

• Configurable write protection

• Configurable read protection

• Various hardware encoding schemes against data corruption in the eFuse memory

4.3 Functional Description

4.3.1 Structure

eFuse data is organized in 4 blocks (BLOCK0 ~ BLOCK3).

BLOCK0 holds control parameters for most hardware modules.

Table 4-1 lists all the parameters in BLOCK0 that can be accessed (read and used) by users and their offsets, bit

widths, as well as information on whether they can be used by hardware, which bits are write-protected, and

corresponding descriptions.

The EFUSE_WR_DIS parameter is used to control the writing of other parameters, while EFUSE_RD_DIS is

used to disable users from reading BLOCK3. For more information on these two parameters, please see Section

4.3.1.1 and Section 4.3.1.2.

Espressif Systems 84
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

4
eFuse

C
ontroller

(eFuse)
GoBack

Table 4­1. Parameters in BLOCK0

Parameters Bit

Width

Accessible

by Hardware

Write Protection

by EFUSE_WR_DIS

Bit Number

Description

EFUSE_WR_DIS 8 Y N/A Disable writing of individual eFuses

EFUSE_RD_DIS 2 Y 0 Disable users from reading eFuse BLOCK3

EFUSE_WDT_DELAY_SEL 2 Y 1 Represent RTC watchdog timeout threshold

EFUSE_DIS_PAD_JTAG 1 Y 1 Disable JTAG permanently

EFUSE_DIS_DOWNLOAD_ICACHE 1 Y 1 Disable iCache in download mode

EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT 1 Y 2 Disable manual flash encryption in download boot modes

EFUSE_SPI_BOOT_ENCRYPT_DECRYPT_CNT 3 Y 2 Enable SPI boot encryption and decryption

EFUSE_XTS_KEY_LENGTH_256 1 Y 2 Represent key length for XTS_AES

EFUSE_UART_PRINT_CONTROL 2 N 3 Represent UART boot message output mode

EFUSE_FORCE_SEND_RESUME 1 N 3
Force ROM code to send an SPI flash resume command during SPI

boot

EFUSE_DIS_DOWNLOAD_MODE 1 N 3 Disable all Download modes

EFUSE_DIS_DIRECT_BOOT 1 N 3 Disable Direct_boot mode

EFUSE_ENABLE_SECURITY_DOWNLOAD 1 N 3 Enable UART secure download mode

EFUSE_FALSH_TPUW 4 N 3 Represents flash startup delay after SoC is powered up

EFUSE_SECURE_BOOT_EN 1 N 2 Enable secure boot

EFUSE_SECURE_VERSION 4 N 4 Secure version

EFUSE_CUSTOM_MAC_USED 1 N 4 Enable customized MAC writing

E
spressifS

ystem
s

85
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

4
eFuse

C
ontroller

(eFuse)
GoBack

Table 4-2 lists parameter information stored in BLOCK1 ~ BLOCK3.

Table 4­2. Parameters in BLOCK1 to BLOCK3

BLOCK Parameters Bit Width Accessible

by Hardware

Write Protection

by EFUSE_WR_DIS

Bit Number

Read Protection

by EFUSE_RD_DIS

Bit Number

Description

BLOCK1 EFUSE_CUSTOMED_MAC 88 N 5 N/A Customize MAC address or user data

BLOCK2 EFUSE_SYS_DATA_PART1 48 N 6 N/A MAC address

208 N 6 N/A System data

BLOCK3 EFUSE_KEY0 128 Y 7 [0] KEY or user data

128 Y 7 [1] KEY or user data

BLOCK1 ~ BLOCK3 use the RS coding scheme, so there are some restrictions on writing to these parameters. For more detailed information, please refer to Section

4.3.1.3 and Section 4.3.2.

E
spressifS

ystem
s

86
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

4.3.1.1 EFUSE_WR_DIS

Parameter EFUSE_WR_DIS determines whether individual eFuse parameters are write-protected. After

EFUSE_WR_DIS has been programmed, execute an eFuse read operation so that the write-protection status

would take effect.

Column ”Write Protection by EFUSE_WR_DIS Bit Number” in Table 4-1 and Table 4-2 lists the specific bits in

EFUSE_WR_DIS that disable writing.

When the write-protect bit of a parameter is set to 0, it means that this parameter is not write-protected and can

be programmed, unless it has been programmed before.

When the write-protect bit of a parameter is set to 1, it means that this parameter is write-protected and none of

its bits can be modified, with non-programmed bits always remaining 0 while programmed bits always remaining

1. That is to say, if a parameter is write-protected, it will always remain in this state and cannot be

changed.

4.3.1.2 EFUSE_RD_DIS

Only parameters in BLOCK3 can be read-protected to prevent any access from outside of the chip as shown in

column ”Read Protection by EFUSE_RD_DIS Bit Number” of Table 4-2. After EFUSE_RD_DIS has been

programmed, execute an eFuse read operation so that the read-protection status would take effect.

If the corresponding EFUSE_RD_DIS bit is 0, then the eFuse block can be read by users; if the corresponding

EFUSE_RD_DIS bit is 1, then the parameter controlled by this bit is user protected.

Other parameters that are not in BLOCK3 can always be read by users.

4.3.1.3 Data Storage

Internally, eFuse controller uses hardware encoding schemes to protect data from corruption, which are invisible

for users.

All BLOCK0 parameters except for EFUSE_WR_DIS are stored with four backups, meaning each bit is stored

four times. This backup scheme is not visible to users.

Except for EFUSE_WR_DIS which is 8-bit, all other parameters in BLOCK0 are 32-bit. Therefore, BLOCK0

occupies (8 + 32 * 4 = 136) bits of storage totally in eFuse memory.

BLOCK1 ~ BLOCK3 use RS (44, 32) coding scheme that supports up to 6 bytes of automatic error correction.

The primitive polynomial of RS (44, 32) is p(x) = x8 + x4 + x3 + x2 + 1.

The shift register circuit shown in Figure 4-1 and 4-2 processes 32-byte data using RS (44, 32). This coding

scheme encodes 32 bytes of data into 44 bytes:

• Byte 0 ~ 31 is the data itself

• Byte 32 ~ 43 is the parity byte stored in the 8-bit trigger DFF1, DFF2,..., DFF12 (where gf_mul_n (n is an

integer) is the result of multiplying a byte of data in the GF (28) field with the element αn)

Then, hardware will write the 44-byte data to eFuse memory. The eFuse controller will automatically decode the

data and correct errors when reading the eFuse block.

Because the RS check codes are generated on the entire 256-bit eFuse block, each block can only be written

once.

Espressif Systems 87
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Figure 4­1. Shift Register Circuit (former 32­byte)

Figure 4­2. Shift Register Circuit (latter 12­byte)

Since the size of BLOCK1 is less than 256-bit, the unused bits will be treated as 0 by hardware during the RS

(44, 32) decoding. Thus the final coding result will not be affected.

Among blocks using the RS (44, 32) coding scheme, the parameter in BLOCK1 is 88-bit, and the RS check code

is 96-bit, so BLOCK1 occupies (88 + 96 = 184) bits in eFuse memory. The parameter in BLOCK2 and BLOCK3

is 256-bit respectively, and the RS check code is 96-bit, so these two blocks occupy ((256 + 96) * 2 = 704) bits in

eFuse memory.

4.3.2 Programming of Parameters

The eFuse controller can only program eFuse parameters in one block at a time. BLOCK0 ~ BLOCK3 share the

same address range to store the parameters to be programmed. Configure parameter EFUSE_BLK_NUM to

indicate which block should be programmed.

Programming BLOCK0

Set the EFUSE_BLK_NUM field to 0. The parameters to be programmed in BLOCK0 are stored in

EFUSE_PGM_DATA0_REG ~ EFUSE_PGM_DATA1_REG. The data in EFUSE_PGM_DATA2_REG ~
EFUSE_PGM_DATA7_REG and EFUSE_PGM_CHECK_VALUE0_REG ~ EFUSE_PGM_CHECK_VALUE2_REG

registers does not affect the programming of BLOCK0.

Programming BLOCK1

Espressif Systems 88
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Set the EFUSE_BLK_NUM field to 1. The parameters to be programmed in BLOCK1 are stored in

EFUSE_PGM_DATA0_REG ~ EFUSE_PGM_DATA2_REG, while the corresponding RS check codes are stored in

EFUSE_PGM_CHECK_VALUE0_REG ~ EFUSE_PGM_CHECK_VALUE2_REG. The data in

EFUSE_PGM_DATA3_REG ~ EFUSE_PGM_DATA7_REG registers does not affect the programming of

BLOCK1.

Programming BLOCK2 ~ 3

Set the EFUSE_BLK_NUM field to 2 or 3, respectively. The parameters to be programmed are stored in

EFUSE_PGM_DATA0_REG ~ EFUSE_PGM_DATA7_REG, while the corresponding RS check code is stored in

EFUSE_PGM_CHECK_VALUE0_REG ~ EFUSE_PGM_CHECK_VALUE2_REG.

Programming process

The process of programming parameters is as follows:

1. Configure the value of parameter EFUSE_BLK_NUM to determine the block to be programmed.

2. Write the parameters to be programmed to registers EFUSE_PGM_DATA0_REG ~
EFUSE_PGM_DATA7_REG and EFUSE_PGM_CHECK_VALUE0_REG ~
EFUSE_PGM_CHECK_VALUE2_REG.

3. Make sure the eFuse programming voltage VDDQ is configured correctly as described in Section 4.3.4.

4. Set the field EFUSE_OP_CODE of register EFUSE_CONF_REG to 0x5A5A.

5. Set the field EFUSE_PGM_CMD of register EFUSE_CMD_REG to 1.

6. Poll register EFUSE_CMD_REG until it is 0x0, or wait for a PGM_DONE interrupt. For more information on

how to identify a PGM/READ_DONE interrupt, please see the end of Section 4.3.3.

7. Clear the parameters in EFUSE_PGM_DATA0_REG ~ EFUSE_PGM_DATA7_REG and

EFUSE_PGM_CHECK_VALUE0_REG ~ EFUSE_PGM_CHECK_VALUE2_REG.

8. Trigger an eFuse read operation (see Section 4.3.3) to update eFuse registers with the new values.

9. Check corresponding error registers. If the value read is not 0, above 1 ~ 7 steps should be executed again

to prevent programming insufficiency. For different eFuse blocks, the corresponding error registers that

need to be checked are listed as follows:

• BLOCK0: EFUSE_RD_REPEAT_ERR_REG

• BLOCK1: EFUSE_RD_RS_ERR_REG[3:0]

• BLOCK2: EFUSE_RD_RS_ERR_REG[7:4]

• BLOCK3: EFUSE_RD_RS_ERR_REG[11:8]

Restrictions

In BLOCK0, each bit can be programmed separately. However, we recommend to minimize programming cycles

and program all the bits of a parameter in one programming action. In addition, after all parameters controlled by

a certain bit of EFUSE_WR_DIS are programmed, that bit should be immediately programmed, or you could even

program these parameters and the controlling bit at the same time. By doing so, programming can be effectively

protected by preventing messing the programming of EFUSE_WR_DIS with the bits controlled by it. Repeated

programming of already programmed bits is strictly forbidden. Otherwise, programming errors will occur.

BLOCK2 cannot be programmed by users as it has been programmed at manufacturing.

Espressif Systems 89
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Both BLOCK1 and BLOCK3 can only be programmed once. Repeated programming is not allowed.

4.3.3 User Read of Parameters

Users cannot read data programmed in the eFuse controller directly. The eFuse controller reads all programmed

data and stores the results to their corresponding programming registers in its memory space. Then, users can

read eFuse bits by reading the registers that start with EFUSE_RD_. Details are provided in Table 4-3.

Table 4­3. Registers information

BLOCK Read Registers Programming Registers

0 EFUSE_RD_WR_DIS_REG EFUSE_PGM_DATA0_REG

0 EFUSE_RD_REPEAT_DATA0_REG EFUSE_PGM_DATA1_REG

1 EFUSE_RD_BLK1_DATA0 ~ 2_REG EFUSE_PGM_DATA0 ~ 2_REG

2 EFUSE_RD_BLK2_DATA0 ~ 7_REG EFUSE_PGM_DATA0 ~ 7_REG

3 EFUSE_RD_BLK3_DATA0 ~ 7_REG EFUSE_PGM_DATA0 ~ 7_REG

Updating eFuse controller read registers

The eFuse controller reads eFuse memory to update corresponding registers. This read operation happens on

system reset and can also be triggered manually by users as needed (e.g., if new eFuse values have been

programmed). The process of triggering a read operation by users is as follows:

1. Set the field EFUSE_OP_CODE of register EFUSE_CONF_REG to 0x5AA5.

2. Set the field EFUSE_READ_CMD of register EFUSE_CMD_REG to 1.

3. Poll register EFUSE_CMD_REG until it is 0x0, or wait for a READ_DONE interrupt. Information on how to

identify a PGM/READ_DONE interrupt is provided below in this section.

4. Read the values of each parameter from eFuse memory.

The eFuse controller read registers will hold all values until the next read operation.

Error detection

Error record registers allow users to detect if there are any inconsistencies between the parameters stored in the

eFuse memory and the parameters read by the eFuse controller.

The EFUSE_RD_REPEAT_ERR_REG register indicates if there are any errors of programmed parameters (except

for EFUSE_WR_DIS) in BLOCK0 (value 1 indicates an error is detected, and the bit becomes invalid; value 0

indicates no error).

The EFUSE_RD_RS_ERR_REG register stores the number of corrected bytes as well as the result of RS

decoding during eFuse reading BLOCK1 ~ BLOCK3.

The values of above registers will be updated every time after the eFuse controller read registers have been

updated.

Identifying programming/read operation

The methods to identify the completion of a programming/read operation are described below. Please note that

bit 1 corresponds to a programming operation, and bit 0 corresponds to a read operation.

• Method 1:

Espressif Systems 90
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

1. Poll bit 1/0 in register EFUSE_INT_RAW_REG until it becomes 1, which represents the completion of a

program/read operation.

• Method 2:

1. Set bit 1/0 in register EFUSE_INT_ENA_REG to 1 to enable the eFuse controller to post a

PGM/READ_DONE interrupt.

2. Configure the Interrupt Matrix to enable the CPU to respond to eFuse controller interrupt signals, see

Chapter 8 Interrupt Matrix (INTMTRX).

3. Wait for the PGM/READ_DONE interrupt.

4. Set bit 1/0 in register EFUSE_INT_CLR_REG to 1 to clear the PGM/READ_DONE interrupt.

Attention

When the eFuse controller updating registers, the EFUSE_PGM_DATAn_REG (n=0�1�.., 7) register will be re-used.

Therefore, please do not write meaningful data to such register before the eFuse controller starts to update

registers.

During the chip boot time, the eFuse controller will update eFuse data automatically and write it to registers that

users can access. Users can get eFuse memory data by reading such registers. That is to say, it is no need to

drive the eFuse controller manually again to update read registers.

4.3.4 eFuse VDDQ Timing

The eFuse controller operates with 20 MHz of clock frequency, and its programming voltage VDDQ should be

configured as follows:

• EFUSE_DAC_NUM (the rising period of VDDQ): The default value of VDDQ is 2.5 V and the voltage

increases by 0.01 V in each clock cycle. Thus, the default value of this parameter is 255.

• EFUSE_DAC_CLK_DIV (the clock divisor of VDDQ): The clock period to program VDDQ should be larger

than 1 µs.

• EFUSE_PWR_ON_NUM (the power-up time for VDDQ): The programming voltage should be stabilized after

this time, which means the value of this parameter should be configured to exceed the result of

EFUSE_DAC_CLK_DIV times EFUSE_DAC_NUM.

• EFUSE_PWR_OFF_NUM (the power-down time for VDDQ): The value of this parameter should be larger

than 10 µs.

Table 4­4. Configuration of Default VDDQ Timing Parameters

EFUSE_DAC_NUM EFUSE_DAC_CLK_DIV EFUSE_PWR_ON_NUM EFUSE_PWR_OFF_NUM

0xFF 0x28 0x3000 0x190

4.3.5 Parameters Used by Hardware Modules

Some hardware modules are directly connected to the eFuse peripheral in order to use the parameters listed in

Table 4-1 and Table 4-2, specifically those marked with ”Y” in columns ”Accessible by Hardware”. Users cannot

intervene in this process.

Espressif Systems 91
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

4.3.6 Interrupts

• PGM_DONE interrupt: Triggered when eFuse programming has finished. To enable this interrupt, set the

EFUSE_PGM_DONE_INT_ENA field of register EFUSE_INT_ENA_REG to 1.

• READ_DONE interrupt: Triggered when eFuse read has finished. To enable this interrupt, set the

EFUSE_READ_DONE_INT_ENA field of register EFUSE_INT_ENA_REG to 1.

Espressif Systems 92
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

4.4 Register Summary

The addresses in this section are relative to eFuse controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Name Description Address Access

PGM Data Register

EFUSE_PGM_DATA0_REG Register 0 that configures data to be pro-

grammed

0x0000 R/W

EFUSE_PGM_DATA1_REG Register 1 that configures data to be pro-

grammed

0x0004 R/W

EFUSE_PGM_DATA2_REG Register 2 that configures data to be pro-

grammed

0x0008 R/W

EFUSE_PGM_DATA3_REG Register 3 that configures data to be pro-

grammed

0x000C R/W

EFUSE_PGM_DATA4_REG Register 4 that configures data to be pro-

grammed

0x0010 R/W

EFUSE_PGM_DATA5_REG Register 5 that configures data to be pro-

grammed

0x0014 R/W

EFUSE_PGM_DATA6_REG Register 6 that configures data to be pro-

grammed

0x0018 R/W

EFUSE_PGM_DATA7_REG Register 7 that configures data to be pro-

grammed

0x001C R/W

EFUSE_PGM_CHECK_VALUE0_REG Register 0 that configures the RS code to be pro-

grammed

0x0020 R/W

EFUSE_PGM_CHECK_VALUE1_REG Register 1 that configures the RS code to be pro-

grammed

0x0024 R/W

EFUSE_PGM_CHECK_VALUE2_REG Register 2 that configures the RS code to be pro-

grammed

0x0028 R/W

Read Data Register

EFUSE_RD_WR_DIS_REG Register 0 of BLOCK0 wr_dis data 0x002C RO

EFUSE_RD_REPEAT_DATA0_REG Register 1 of BLOCK0 data 0x0030 RO

EFUSE_RD_BLK1_DATA0_REG Register 0 of BLOCK1 data 0x0034 RO

EFUSE_RD_BLK1_DATA1_REG Register 1 of BLOCK1 data 0x0038 RO

EFUSE_RD_BLK1_DATA2_REG Register 2 of BLOCK1 data 0x003C RO

EFUSE_RD_BLK2_DATA0_REG Register 0 of BLOCK2 data 0x0040 RO

EFUSE_RD_BLK2_DATA1_REG Register 1 of BLOCK2 data 0x0044 RO

EFUSE_RD_BLK2_DATA2_REG Register 2 of BLOCK2 data 0x0048 RO

EFUSE_RD_BLK2_DATA3_REG Register 3 of BLOCK2 data 0x004C RO

EFUSE_RD_BLK2_DATA4_REG Register 4 of BLOCK2 data 0x0050 RO

EFUSE_RD_BLK2_DATA5_REG Register 5 of BLOCK2 data 0x0054 RO

EFUSE_RD_BLK2_DATA6_REG Register 6 of BLOCK2 data 0x0058 RO

EFUSE_RD_BLK2_DATA7_REG Register 7 of BLOCK2 data 0x005C RO

EFUSE_RD_BLK3_DATA0_REG Register 0 of BLOCK3 data 0x0060 RO

EFUSE_RD_BLK3_DATA1_REG Register 1 of BLOCK3 data 0x0064 RO

EFUSE_RD_BLK3_DATA2_REG Register 2 of BLOCK3 data 0x0068 RO

Espressif Systems 93
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Name Description Address Access

EFUSE_RD_BLK3_DATA3_REG Register 3 of BLOCK3 data 0x006C RO

EFUSE_RD_BLK3_DATA4_REG Register 4 of BLOCK3 data 0x0070 RO

EFUSE_RD_BLK3_DATA5_REG Register 5 of BLOCK3 data 0x0074 RO

EFUSE_RD_BLK3_DATA6_REG Register 6 of BLOCK3 data 0x0078 RO

EFUSE_RD_BLK3_DATA7_REG Register 7 of BLOCK3 data 0x007C RO

Report Register

EFUSE_RD_REPEAT_ERR_REG Register 0 with programming error record of

BLOCK0

0x0080 RO

EFUSE_RD_RS_ERR_REG Register 0 with programming error record of

BLOCK1-3

0x0084 RO

Configuration Register

EFUSE_CLK_REG eFuse clock configuration register 0x0088 R/W

EFUSE_CONF_REG eFuse operation mode configuration register 0x008C R/W

EFUSE_CMD_REG eFuse command register 0x0094 Varies

EFUSE_DAC_CONF_REG Controls the eFuse programming voltage 0x0108 R/W

EFUSE_RD_TIM_CONF_REG Configures read timing parameters 0x010C R/W

EFUSE_WR_TIM_CONF1_REG Configuration register 1 of eFuse programming

timing parameters

0x0114 R/W

EFUSE_WR_TIM_CONF2_REG Configuration register 2 of eFuse programming

timing parameters

0x0118 R/W

Status Register

EFUSE_STATUS_REG eFuse status register 0x0090 RO

Interrupt Register

EFUSE_INT_RAW_REG eFuse raw interrupt register 0x0098 R/WTC/SS

EFUSE_INT_ST_REG eFuse interrupt status register 0x009C RO

EFUSE_INT_ENA_REG eFuse interrupt enable register 0x0100 R/W

EFUSE_INT_CLR_REG eFuse interrupt clear register 0x0104 WT

Version Register

EFUSE_DATE_REG eFuse version register 0x01FC R/W

Espressif Systems 94
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

4.5 Registers

The addresses in this section are relative to eFuse controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Register 4.1. EFUSE_PGM_DATA0_REG (0x0000)

EF
US
E_
PG
M
_D
AT
A_
0

0x000000

31 0

Reset

EFUSE_PGM_DATA_0 Configures the content of the 0th 32-bit data to be programmed. (R/W)

Register 4.2. EFUSE_PGM_DATA1_REG (0x0004)

EF
US
E_
PG
M
_D
AT
A_
1

0x000000

31 0

Reset

EFUSE_PGM_DATA_1 Configures the content of the 1st 32-bit data to be programmed. (R/W)

Register 4.3. EFUSE_PGM_DATA2_REG (0x0008)

EF
US
E_
PG
M
_D
AT
A_
2

0x000000

31 0

Reset

EFUSE_PGM_DATA_2 Configures the content of the 2nd 32-bit data to be programmed. (R/W)

Espressif Systems 95
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.4. EFUSE_PGM_DATA3_REG (0x000C)

EF
US
E_
PG
M
_D
AT
A_
3

0x000000

31 0

Reset

EFUSE_PGM_DATA_3 Configures the content of the 3rd 32-bit data to be programmed. (R/W)

Register 4.5. EFUSE_PGM_DATA4_REG (0x0010)

EF
US
E_
PG
M
_D
AT
A_
4

0x000000

31 0

Reset

EFUSE_PGM_DATA_4 Configures the content of the 4th 32-bit data to be programmed. (R/W)

Register 4.6. EFUSE_PGM_DATA5_REG (0x0014)

EF
US
E_
PG
M
_D
AT
A_
5

0x000000

31 0

Reset

EFUSE_PGM_DATA_5 Configures the content of the 5th 32-bit data to be programmed. (R/W)

Register 4.7. EFUSE_PGM_DATA6_REG (0x0018)

EF
US
E_
PG
M
_D
AT
A_
6

0x000000

31 0

Reset

EFUSE_PGM_DATA_6 Configures the content of the 6th 32-bit data to be programmed. (R/W)

Espressif Systems 96
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.8. EFUSE_PGM_DATA7_REG (0x001C)

EF
US
E_
PG
M
_D
AT
A_
7

0x000000

31 0

Reset

EFUSE_PGM_DATA_7 Configures the content of the 7th 32-bit data to be programmed. (R/W)

Register 4.9. EFUSE_PGM_CHECK_VALUE0_REG (0x0020)

EF
US
E_
PG
M
_R
S_
DA
TA
_0

0x000000

31 0

Reset

EFUSE_PGM_RS_DATA_0 Configures the content of the 0th 32-bit RS code to be programmed.

(R/W)

Register 4.10. EFUSE_PGM_CHECK_VALUE1_REG (0x0024)

EF
US
E_
PG
M
_R
S_
DA
TA
_1

0x000000

31 0

Reset

EFUSE_PGM_RS_DATA_1 Configures the content of the 1st 32-bit RS code to be programmed.

(R/W)

Espressif Systems 97
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.11. EFUSE_PGM_CHECK_VALUE2_REG (0x0028)

EF
US
E_
PG
M
_R
S_
DA
TA
_2

0x000000

31 0

Reset

EFUSE_PGM_RS_DATA_2 Configures the content of the 2nd 32-bit RS code to be programmed.

(R/W)

Register 4.12. EFUSE_RD_WR_DIS_REG (0x002C)

(re
se
rve
d)

0 0

31 8

EF
US
E_
W
R_
DI
S

0x0

7 0

Reset

EFUSE_WR_DIS Represents whether programming of individual eFuses is disabled or enabled. 1:

Disabled. 0: Enabled. (RO)

Espressif Systems 98
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.13. EFUSE_RD_REPEAT_DATA0_REG (0x0030)

EF
US
E_
RP
T4
_R
ES
ER
VE
D

0x0

31 27

EF
US
E_
CU
ST
OM

_M
AC
_U
SE
D

0

26

EF
US
E_
SE
CU
RE
_V
ER
SI
ON

0x0

25 22

EF
US
E_
SE
CU
RE
_B
OO
T_
EN

0

21

EF
US
E_
FL
AS
H_
TP
UW

0x0

20 17

EF
US
E_
EN
AB
LE
_S
EC
UR
ITY
_D
OW

NL
OA
D

0

16

EF
US
E_
DI
S_
DI
RE
CT
_B
OO
T

0

15

EF
US
E_
DI
S_
DO
W
NL
OA
D_
M
OD
E

0

14

EF
US
E_
FO
RC
E_
SE
ND
_R
ES
UM
E

0

13

EF
US
E_
UA
RT
_P
RI
NT
_C
ON
TR
OL

0x0

12 11

EF
US
E_
XT
S_
KE
Y_
LE
NG
TH
_2
56

0

10

EF
US
E_
SP
I_B
OO
T_
EN
CR
YP
T_
DE
CR
YP
T_
CN
T

0x0

9 7

EF
US
E_
DI
S_
DO
W
NL
OA
D_
M
AN
UA
L_
EN
CR
YP
T

0

6

EF
US
E_
DI
S_
DO
W
NL
OA
D_
IC
AC
HE

0

5

EF
US
E_
DI
S_
PA
D_
JT
AG

0

4

EF
US
E_
W
DT
_D
EL
AY
_S
EL

0x0

3 2

EF
US
E_
RD
_D
IS

0

1 0

Reset

EFUSE_RD_DIS Represents whether reading of the high/low 128 bits is disabled or enabled. 1:

Disabled. 0: Enabled. (RO)

EFUSE_WDT_DELAY_SEL Represents RTC watchdog timeout threshold. Measurement unit: slow

clock cycle. 0: 40000. 1: 80000. 2: 160000. 3: 320000. (RO)

EFUSE_DIS_PAD_JTAG Represents whether pad JTAG is permanently disabled or enabled. 1: Dis-

abled. 0: Enabled. (RO)

EFUSE_DIS_DOWNLOAD_ICACHE Represents whether iCache is disabled or enabled in download

mode. 1: Disabled. 0: Enabled. (RO)

EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT Represents whether manual flash encryption is

disabled or enabled in download boot modes. 1: Disabled. 0: Enabled. (RO)

EFUSE_SPI_BOOT_ENCRYPT_DECRYPT_CNT Represents whether SPI boot encryption and de-

cryption are disabled or enabled. Odd number of 1: Enabled. Even number of 1: Disabled. (RO)

EFUSE_XTS_KEY_LENGTH_256 Represents key length for XTS_AES. 1: All 256 bits of BLOCK3.

0: The lower 128 bits of BLOCK3. (RO)

EFUSE_UART_PRINT_CONTROL Represents UART boot message output mode. 2’b00: Force

print; 2’b01: Low-level print, controlled by GPIO8; 2’b10: High-level print, controlled by GPIO8;

2’b11: Print force disable. (RO)

EFUSE_FORCE_SEND_RESUME Represents whether to force ROM code to send an SPI flash re-

sume command during SPI boot. 1: Send. 0: Not send. (RO)

EFUSE_DIS_DOWNLOAD_MODE Represents whether all Download modes are disabled or enabled

(boot_mode[3:0] = 0, 1, 2, 4, 5, 6, 7). 1: Disabled. 0: Enabled. (RO)

EFUSE_DIS_DIRECT_BOOT Represents whether Direct_boot mode is disabled or enabled. 1: Dis-

abled. 0: Enabled. (RO)

EFUSE_ENABLE_SECURITY_DOWNLOAD Represents whether UART secure download mode is

enabled or disabled (read/write flash only). 1: Enabled. 0: Disabled. (RO)

Continued on the next page...

Espressif Systems 99
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.13. EFUSE_RD_REPEAT_DATA0_REG (0x0030)

Continued from the previous page...

EFUSE_FLASH_TPUW Represents flash startup delay after SoC is powered up. Measurement unit:

ms. If the value is less than 15, it represents the delay. If the value is equal to or larger than 15, the

delay is 30 ms. (RO)

EFUSE_SECURE_BOOT_EN Represents whether secure boot is enabled or disabled. 1: Enabled.

0: Disabled. (RO)

EFUSE_SECURE_VERSION Represents the secure version used by ESP-IDF anti-rollback feature.

(RO)

EFUSE_CUSTOM_MAC_USED Represents whether the MAC customized by users is used or not.

1: Used. 0: Not used. (RO)

EFUSE_RPT4_RESERVED Reserved (used for four backups method). (RO)

Register 4.14. EFUSE_RD_BLK1_DATA0_REG (0x0034)

EF
US
E_
US
ER
_D
AT
A0

0x000000

31 0

Reset

EFUSE_USER_DATA0 Stores the 0th 32-bit of user data. (RO)

Register 4.15. EFUSE_RD_BLK1_DATA1_REG (0x0038)

EF
US
E_
US
ER
_D
AT
A1

0x000000

31 0

Reset

EFUSE_USER_DATA1 Stores the 1st 32-bit of user data. (RO)

Espressif Systems 100
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.16. EFUSE_RD_BLK1_DATA2_REG (0x003C)

(re
se
rve
d)

0 0 0 0 0 0 0 0

31 24

EF
US
E_
US
ER
_D
AT
A2

0x0000

23 0

Reset

EFUSE_USER_DATA2 Stores the bits [64:87] of user data. (RO)

Register 4.17. EFUSE_RD_BLK2_DATA0_REG (0x0040)

EF
US
E_
M
AC
_ID
_L
OW

0x000000

31 0

Reset

EFUSE_MAC_ID_LOW Stores the lower 32-bit of MAC ID. (RO)

Register 4.18. EFUSE_RD_BLK2_DATA1_REG (0x0044)

EF
US
E_
SY
S_
DA
TA
0

0x00

31 16

EF
US
E_
M
AC
_ID
_H
IG
H

0x00

15 0

Reset

EFUSE_MAC_ID_HIGH Stores the higher 16-bit of MAC ID. (RO)

EFUSE_SYS_DATA0 Stores the 0th 16-bit of system data. (RO)

Register 4.19. EFUSE_RD_BLK2_DATA2_REG (0x0048)

EF
US
E_
SY
S_
DA
TA
1

0x000000

31 0

Reset

EFUSE_SYS_DATA1 Stores the 0th 32-bit of system data. (RO)

Espressif Systems 101
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.20. EFUSE_RD_BLK2_DATA3_REG (0x004C)

EF
US
E_
SY
S_
DA
TA
2

0x000000

31 0

Reset

EFUSE_SYS_DATA2 Stores the 1st 32-bit of system data. (RO)

Register 4.21. EFUSE_RD_BLK2_DATA4_REG (0x0050)

EF
US
E_
SY
S_
DA
TA
3

0x000000

31 0

Reset

EFUSE_SYS_DATA3 Stores the 2nd 32-bit of system data. (RO)

Register 4.22. EFUSE_RD_BLK2_DATA5_REG (0x0054)

EF
US
E_
SY
S_
DA
TA
4

0x000000

31 0

Reset

EFUSE_SYS_DATA4 Stores the 3rd 32-bit of system data. (RO)

Register 4.23. EFUSE_RD_BLK2_DATA6_REG (0x0058)

EF
US
E_
SY
S_
DA
TA
5

0x000000

31 0

Reset

EFUSE_SYS_DATA5 Stores the 4th 32-bit of system data. (RO)

Espressif Systems 102
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.24. EFUSE_RD_BLK2_DATA7_REG (0x005C)

EF
US
E_
SY
S_
DA
TA
6

0x000000

31 0

Reset

EFUSE_SYS_DATA6 Stores the 5th 32-bit of system data. (RO)

Register 4.25. EFUSE_RD_BLK3_DATA0_REG (0x0060)

EF
US
E_
BL
K3
_D
AT
A0

0x000000

31 0

Reset

EFUSE_BLK3_DATA0 Stores the 0th 32-bit of BLOCK3. (RO)

Register 4.26. EFUSE_RD_BLK3_DATA1_REG (0x0064)

EF
US
E_
BL
K3
_D
AT
A1

0x000000

31 0

Reset

EFUSE_BLK3_DATA1 Stores the 1st 32-bit of BLOCK3. (RO)

Register 4.27. EFUSE_RD_BLK3_DATA2_REG (0x0068)

EF
US
E_
BL
K3
_D
AT
A2

0x000000

31 0

Reset

EFUSE_BLK3_DATA2 Stores the 2nd 32-bit of BLOCK3. (RO)

Espressif Systems 103
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.28. EFUSE_RD_BLK3_DATA3_REG (0x006C)

EF
US
E_
BL
K3
_D
AT
A3

0x000000

31 0

Reset

EFUSE_BLK3_DATA3 Stores the 3rd 32-bit of BLOCK3. (RO)

Register 4.29. EFUSE_RD_BLK3_DATA4_REG (0x0070)

EF
US
E_
BL
K3
_D
AT
A4

0x000000

31 0

Reset

EFUSE_BLK3_DATA4 Stores the 4th 32-bit of BLOCK3. (RO)

Register 4.30. EFUSE_RD_BLK3_DATA5_REG (0x0074)

EF
US
E_
BL
K3
_D
AT
A5

0x000000

31 0

Reset

EFUSE_BLK3_DATA5 Stores the 5th 32-bit of BLOCK3. (RO)

Register 4.31. EFUSE_RD_BLK3_DATA6_REG (0x0078)

EF
US
E_
BL
K3
_D
AT
A6

0x000000

31 0

Reset

EFUSE_BLK3_DATA6 Stores the 6th 32-bit of BLOCK3. (RO)

Espressif Systems 104
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.32. EFUSE_RD_BLK3_DATA7_REG (0x007C)

EF
US
E_
BL
K3
_D
AT
A7

0x000000

31 0

Reset

EFUSE_BLK3_DATA7 Stores the 7th 32-bit of BLOCK3. (RO)

Espressif Systems 105
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.33. EFUSE_RD_REPEAT_ERR_REG (0x0080)

EF
US
E_
RP
T4
_R
ES
ER
VE
D_
ER
R

0x0

31 27

EF
US
E_
CU
ST
OM

_M
AC
_U
SE
D_
ER
R

0

26

EF
US
E_
SE
CU
RE
_V
ER
SI
ON
_E
RR

0x0

25 22

EF
US
E_
SE
CU
RE
_B
OO
T_
EN
_E
RR

0

21

EF
US
E_
FL
AS
H_
TP
UW

_E
RR

0x0

20 17

EF
US
E_
EN
AB
LE
_S
EC
UR
ITY
_D
OW

NL
OA
D_
ER
R

0

16

EF
US
E_
DI
S_
DI
RE
CT
_B
OO
T_
ER
R

0

15

EF
US
E_
DI
S_
DO
W
NL
OA
D_
M
OD
E_
ER
R

0

14

EF
US
E_
FO
RC
E_
SE
ND
_R
ES
UM
E_
ER
R

0

13

EF
US
E_
UA
RT
_P
RI
NT
_C
ON
TR
OL
_E
RR

0x0

12 11

EF
US
E_
XT
S_
KE
Y_
LE
NG
TH
_2
56
_E
RR

0

10

EF
US
E_
SP
I_B
OO
T_
EN
CR
YP
T_
DE
CR
YP
T_
CN
T_
ER
R

0x0

9 7

EF
US
E_
DI
S_
DO
W
NL
OA
D_
M
AN
UA
L_
EN
CR
YP
T_
ER
R

0

6

EF
US
E_
DI
S_
DO
W
NL
OA
D_
IC
AC
HE
_E
RR

0

5

EF
US
E_
DI
S_
PA
D_
JT
AG
_E
RR

0

4

EF
US
E_
W
DT
_D
EL
AY
_S
EL
_E
RR

0x0

3 2

EF
US
E_
RD
_D
IS
_E
RR

0

1 0

Reset

EFUSE_RD_DIS_ERR If any bit in RD_DIS_ERR is 1, then it indicates a programming error of this

parameter. (RO)

EFUSE_WDT_DELAY_SEL_ERR If any bit in WDT_DELAY_SEL_ERR is 1, then it indicates a pro-

gramming error of this parameter. (RO)

EFUSE_DIS_PAD_JTAG_ERR If any bit in DIS_PAD_JTAG_ERR is 1, then it indicates a programming

error of this parameter. (RO)

EFUSE_DIS_DOWNLOAD_ICACHE_ERR If any bit in DIS_DOWN_ICACHE_ERR is 1, then it indi-

cates a programming error of this parameter. (RO)

EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT_ERR If any bit in

DIS_DOWNLOAD_MANUAL_ENCRYPT_ERR is 1, then it indicates a programming error of

this parameter. (RO)

EFUSE_SPI_BOOT_ENCRYPT_DECRYPT_CNT_ERR If any bit in

SPI_BOOT_ENCRYPT_DECRYPT_CNT_ERR is 1, then it indicates a programming error of

this parameter. (RO)

EFUSE_XTS_KEY_LENGTH_256_ERR If any bit in XTS_KEY_LENGTH_256_ERR is 1, then it indi-

cates a programming error of this parameter. (RO)

EFUSE_UART_PRINT_CONTROL_ERR If any bit in UART_PRINT_CONTROL_ERR is 1, then it in-

dicates a programming error of this parameter. (RO)

EFUSE_FORCE_SEND_RESUME_ERR If any bit in FORCE_SEND_RESUME_ERR is 1, then it indi-

cates a programming error of this parameter. (RO)

EFUSE_DIS_DOWNLOAD_MODE_ERR If any bit in DIS_DOWNLOAD_MODE_ERR is 1, then it in-

dicates a programming error of this parameter. (RO)

EFUSE_DIS_DIRECT_BOOT_ERR If any bit in DIS_DIRECT_BOOT_ERR is 1, then it indicates a pro-

gramming error of this parameter. (RO)

Continued on the next page...

Espressif Systems 106
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.33. EFUSE_RD_REPEAT_ERR_REG (0x0080)

Continued from the previous page...

EFUSE_ENABLE_SECURITY_DOWNLOAD_ERR If any bit in EN-

ABLE_SECURITY_DOWNLOAD_ERR is 1, then it indicates a programming error of this parameter.

(RO)

EFUSE_FLASH_TPUW_ERR If any bit in FLASH_TPUW_ERR is 1, then it indicates a programming

error of this parameter. (RO)

EFUSE_SECURE_BOOT_EN_ERR If any bit in SECURE_BOOT_EN_ERR is 1, then it indicates a

programming error of this parameter. (RO)

EFUSE_SECURE_VERSION_ERR If any bit in SECURE_VERSION_ERR is 1, then it indicates a pro-

gramming error of this parameter. (RO)

EFUSE_CUSTOM_MAC_USED_ERR If any bit in CUSTOM_MAC_USED_ERR is 1, then it indicates

a programming error of this parameter. (RO)

EFUSE_RPT4_RESERVED_ERR Reserved. (RO)

Register 4.34. EFUSE_RD_RS_ERR_REG (0x0084)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

EF
US
E_
BL
K3
_F
AI
L

0

11

EF
US
E_
BL
K3
_E
RR
_N
UM

0x0

10 8

EF
US
E_
BL
K2
_F
AI
L

0

7

EF
US
E_
BL
K2
_E
RR
_N
UM

0x0

6 4

EF
US
E_
BL
K1
_F
AI
L

0

3

EF
US
E_
BL
K1
_E
RR
_N
UM

0x0

2 0

Reset

EFUSE_BLK1_ERR_NUM The value of this signal means the number of error bytes in BLOCK1. (RO)

EFUSE_BLK1_FAIL 0: Means no failure and that the data of BLOCK1 is reliable. 1: Means that

programming user data failed and the number of error bytes is over 6. (RO)

EFUSE_BLK2_ERR_NUM The value of this signal means the number of error bytes in BLOCK2. (RO)

EFUSE_BLK2_FAIL 0: Means no failure and that the data of BLOCK2 is reliable. 1: Means that

programming user data failed and the number of error bytes is over 6. (RO)

EFUSE_BLK3_ERR_NUM The value of this signal means the number of error bytes in BLOCK3. (RO)

EFUSE_BLK3_FAIL 0: Means no failure and that the BLOCK3 data is reliable. 1: Means that pro-

gramming user data failed and the number of error bytes is over 6. (RO)

Espressif Systems 107
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.35. EFUSE_CLK_REG (0x0088)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

EF
US
E_
CL
K_
EN

0

16

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

15 3

EF
US
E_
EF
US
E_
M
EM
_F
OR
CE
_P
U

0

2

EF
US
E_
M
EM
_C
LK
_F
OR
CE
_O
N

1

1

EF
US
E_
EF
US
E_
M
EM
_F
OR
CE
_P
D

0

0

Reset

EFUSE_EFUSE_MEM_FORCE_PD Set this bit to force SRAM in eFuse controller into power-saving

mode. (R/W)

EFUSE_MEM_CLK_FORCE_ON Set this bit to force to activate clock signal of SRAM in eFuse con-

troller. (R/W)

EFUSE_EFUSE_MEM_FORCE_PU Set this bit to force SRAM in eFuse controller into working mode.

(R/W)

EFUSE_CLK_EN Set this bit to force enable clock signal of eFuse configuration register. (R/W)

Register 4.36. EFUSE_CONF_REG (0x008C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EF
US
E_
OP
_C
OD
E

0x00

15 0

Reset

EFUSE_OP_CODE 0x5A5A: Operate programming command. 0x5AA5: Operate read command.

(R/W)

Espressif Systems 108
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.37. EFUSE_CMD_REG (0x0094)

(re
se
rve
d)

0 0

31 4

EF
US
E_
BL
K_
NU
M

0x0

3 2

EF
US
E_
PG
M
_C
M
D

0

1

EF
US
E_
RE
AD
_C
M
D

0

0

Reset

EFUSE_READ_CMD Set this bit to send read command. (R/W/SC)

EFUSE_PGM_CMD Set this bit to send programming command. (R/W/SC)

EFUSE_BLK_NUM The serial number of the block to be programmed. Value 0-3 corresponds to

block number 0-3 respectively. (R/W)

Register 4.38. EFUSE_DAC_CONF_REG (0x0108)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

EF
US
E_
OE
_C
LR

0

17

EF
US
E_
DA
C_
NU
M

255

16 9

EF
US
E_
DA
C_
CL
K_
PA
D_
SE
L

0

8

EF
US
E_
DA
C_
CL
K_
DI
V

28

7 0

Reset

EFUSE_DAC_CLK_DIV Controls the division factor of the rising clock of the programming voltage.

(R/W)

EFUSE_DAC_CLK_PAD_SEL Don’t care. (R/W)

EFUSE_DAC_NUM Controls the rising period of the programming voltage. (R/W)

EFUSE_OE_CLR Reduces the power supply of the programming voltage. (R/W)

Register 4.39. EFUSE_RD_TIM_CONF_REG (0x010C)

EF
US
E_
RE
AD
_IN
IT_
NU
M

0x12

31 24

(re
se
rve
d)

0 0

23 0

Reset

EFUSE_READ_INIT_NUM Configures the waiting time of reading eFuse memory. (R/W)

Espressif Systems 109
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.40. EFUSE_WR_TIM_CONF1_REG (0x0114)

(re
se
rve
d)

0 0 0 0 0 0 0 0

31 24

EF
US
E_
PW

R_
ON
_N
UM

0x3000

23 8

(re
se
rve
d)

0 0 0 0 0 0 0 0

7 0

Reset

EFUSE_PWR_ON_NUM Configures the power up time for VDDQ. (R/W)

Register 4.41. EFUSE_WR_TIM_CONF2_REG (0x0118)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EF
US
E_
PW

R_
OF
F_
NU
M

0x190

15 0

Reset

EFUSE_PWR_OFF_NUM Configures the power outage time for VDDQ. (R/W)

Register 4.42. EFUSE_STATUS_REG (0x0090)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

EF
US
E_
BL
K0
_V
AL
ID
_B
IT_
CN
T

0x0

15 10

(re
se
rve
d)

0 0 0 0 0 0

9 4

EF
US
E_
ST
AT
E

0x0

3 0

Reset

EFUSE_STATE Indicates the state of the eFuse controller state machine. (RO)

EFUSE_BLK0_VALID_BIT_CNT Records the number of bits with a value of ’1’ in BLOCK0. (RO)

Espressif Systems 110
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.43. EFUSE_INT_RAW_REG (0x0098)

(re
se
rve
d)

0 0

31 2

EF
US
E_
PG
M
_D
ON
E_
IN
T_
RA
W

0

1

EF
US
E_
RE
AD
_D
ON
E_
IN
T_
RA
W

0

0

Reset

EFUSE_READ_DONE_INT_RAW The raw bit signal for read_done interrupt. (R/WTC/SS)

EFUSE_PGM_DONE_INT_RAW The raw bit signal for pgm_done interrupt. (R/WTC/SS)

Register 4.44. EFUSE_INT_ST_REG (0x009C)

(re
se
rve
d)

0 0

31 2

EF
US
E_
PG
M
_D
ON
E_
IN
T_
ST

0

1

EF
US
E_
RE
AD
_D
ON
E_
IN
T_
ST

0

0

Reset

EFUSE_READ_DONE_INT_ST The status signal for read_done interrupt. (RO)

EFUSE_PGM_DONE_INT_ST The status signal for pgm_done interrupt. (RO)

Register 4.45. EFUSE_INT_ENA_REG (0x0100)

(re
se
rve
d)

0 0

31 2

EF
US
E_
PG
M
_D
ON
E_
IN
T_
EN
A

0

1

EF
US
E_
RE
AD
_D
ON
E_
IN
T_
EN
A

0

0

Reset

EFUSE_READ_DONE_INT_ENA The enable signal for read_done interrupt. (R/W)

EFUSE_PGM_DONE_INT_ENA The enable signal for pgm_done interrupt. (R/W)

Espressif Systems 111
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

4 eFuse Controller (eFuse) GoBack

Register 4.46. EFUSE_INT_CLR_REG (0x0104)

(re
se
rve
d)

0 0

31 2

EF
US
E_
PG
M
_D
ON
E_
IN
T_
CL
R

0

1

EF
US
E_
RE
AD
_D
ON
E_
IN
T_
CL
R

0

0

Reset

EFUSE_READ_DONE_INT_CLR The clear signal for read_done interrupt. (WT)

EFUSE_PGM_DONE_INT_CLR The clear signal for pgm_done interrupt. (WT)

Register 4.47. EFUSE_DATE_REG (0x01FC)

(re
se
rve
d)

0 0 0 0

31 28

EF
US
E_
DA
TE

0x2108190

27 0

Reset

EFUSE_DATE Stores eFuse controller register version. (R/W)

Espressif Systems 112
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

5 IO MUX and GPIO Matrix (GPIO, IO MUX)

5.1 Overview

The ESP8684 chip features 21 GPIO pins. Each pin can be used as a general-purpose I/O, or to be connected

to an internal peripheral signal. Through GPIO matrix and IO MUX, peripheral input signals can be from any IO

pins, and peripheral output signals can be routed to any IO pins. Together these modules provide highly

configurable I/O.

Note:

• The 21 GPIO pins are numbered 0 ~ 20.

• For chip variants with a SiP flash built in, GPIO11~ GPIO17 are dedicated to connecting SiP flash, not for other

uses. The remaining 14 GPIO pins (numbered 0 ~ 10, 18 ~ 20) are configurable by users.

5.2 Features

GPIO matrix has the following features:

• A full-switching matrix between the peripheral input/output signals and the GPIO pins.

• 33 peripheral input signals can be sourced from the input of any GPIO pins.

• The output of any GPIO pins can be from any of the 61 peripheral output signals.

• Supports signal synchronization for peripheral inputs based on APB clock bus.

• Provides input signal filter.

• Supports GPIO simple input and output.

IO MUX has the following features:

• Provides one configuration register IO_MUX_GPIOn_REG for each GPIO pin. The pin can be configured to

– perform GPIO function routed by GPIO matrix;

– or perform direct connection bypassing GPIO matrix.

• Supports some high-speed digital signals (SPI, JTAG, UART) bypassing GPIO matrix for better

high-frequency digital performance. In this case, IO MUX is used to connect these pins directly to

peripherals.

5.3 Architectural Overview

Figure 5-1 shows in details how IO MUX and GPIO matrix route signals from pins to peripherals, and from

peripherals to pins.

Espressif Systems 113
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Figure 5­1. Architecture of IO MUX and GPIO Matrix

1. Only part of peripheral input signals (marked “yes” in column “Direct input through IO MUX” in Table 5-2)

can bypass GPIO matrix. The other input signals can only be routed to peripherals via GPIO matrix.

2. There are only 21 inputs from GPIO SYNC to GPIO matrix, since ESP8684 provides 21 GPIO pins in total.

Note, for chip variants with SiP flash, there are only 14 inputs from GPIO SYNC to GPIO matrix in total.

3. The pins supplied by VDD3P3_CPU or by VDD3P3_RTC are controlled by the signals: IE, OE, WPU, and

WPD.

4. Only part of peripheral outputs (marked “yes” in column “Direct output through IO MUX” in Table 5-2) can be

routed to pins bypassing GPIO matrix. The other output signals can only be routed to pins via GPIO matrix.

5. There are 21 outputs (corresponding to GPIO X: 0 ~ 20) from GPIO matrix to IO MUX. Note, for chip

variants with SiP flash, there are only 14 outputs (corresponding to GPIO X: 0 ~ 10, 18 ~ 20) from GPIO

matrix to IO MUX in total.

Figure 5-2 shows the internal structure of a pad, which is an electrical interface between the chip logic and the

GPIO pin. The structure is applicable to all 21 GPIO pins and can be controlled by IE, OE, WPU, and WPD

signals.

Espressif Systems 114
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Figure 5­2. Internal Structure of a Pad

Note:

• IE: input enable

• OE: output enable

• WPU: internal weak pull-up resistor

• WPD: internal weak pull-down resistor

• Bonding pad: a terminal point of the chip logic used to make a physical connection from the chip die to GPIO pin

in the chip package.

5.4 Peripheral Input via GPIO Matrix

5.4.1 Overview

To receive a peripheral input signal via GPIO matrix, the matrix is configured to source the peripheral input signal

from one of the 21 GPIOs (0 ~ 20), see Table 5-2. Meanwhile, register corresponding to the peripheral signal

should be set to receive input signal via GPIO matrix.

5.4.2 Signal Synchronization

When signals are directed from pins using GPIO matrix, the signals will be synchronized to the APB bus clock by

GPIO SYNC hardware, then go to GPIO matrix. This synchronization applies to all GPIO matrix signals but does

not apply when using IO MUX, see Figure 5-1.

Espressif Systems 115
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

GPIO Input

GPIO Input Synchronization

0

1

GPIO_PINx_SYNC1_BYPASS[0]

GPIO_PINx_SYNC1_BYPASS[1]

GPIO_PINx_SYNC2_BYPASS[0]

GPIO_PINx_SYNC2_BYPASS[1]negative
sync

positive
sync

0

1

0

1negative
sync

positive
sync

0

1

First-level synchronizer
Second-level synchronizer

Figure 5­3. GPIO Input Synchronized on APB Clock Rising Edge or on Falling Edge

Figure 5-3 shows the functionality of GPIO SYNC. In the figure, negative sync and positive sync mean GPIO input

is synchronized on APB clock falling edge and on APB clock rising edge, respectively.

The synchronization function is disabled by default, i.e., GPIO_PINx_SYNC1/2_BYPASS[1:0] = 0. But when an

asynchronous peripheral signal is connected to the pin, this signal should be synchronized by two-level

synchronization (i.e., first-level synchronizer and second-level synchronizer) to reduce the probability of causing

metastability. For more information, see Step 3 in the following section.

5.4.3 Functional Description

To read GPIO pin X1 into peripheral signal Y, follow the steps below:

1. Configure register GPIO_FUNCy_IN_SEL_CFG_REG corresponding to peripheral signal Y in GPIO matrix:

• Set GPIO_SIGy_IN_SEL to enable peripheral signal input via GPIO matrix.

• Set GPIO_FUNCy_IN_SEL to the desired GPIO pin, i.e. X here.

Note that some peripheral signals have no valid GPIO_SIGy_IN_SEL bit, namely, these peripherals can only

receive input signals via GPIO matrix.

2. Optionally enable the filter for pin input signals by setting IO_MUX_GPIOn_FILTER_EN. Only the signals with

a valid width of more than two clock cycles can be sampled, see Figure 5-4.

Espressif Systems 116
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Figure 5­4. Filter Timing of GPIO Input Signals

3. Synchronize GPIO input. To do so, please set GPIO_PINx_REG corresponding to GPIO pin X as follows:

• Set GPIO_PINx_SYNC1_BYPASS to enable input signal synchronized on rising edge or on falling edge

in the first-level synchronizer, see Figure 5-3.

• Set GPIO_PINx_SYNC2_BYPASS to enable input signal synchronized on rising edge or on falling edge

in the second-level synchronizer, see Figure 5-3.

4. Configure IO MUX register to enable pin input. For this end, please set IO_MUX_GPIOx_REG

corresponding to GPIO pin X as follows:

• Set IO_MUX_GPIOx_FUN_IE to enable input2.

• Set or clear IO_MUX_GPIOx_FUN_WPU and IO_MUX_GPIOx_FUN_WPD, as desired, to enable or

disable pull-up and pull-down resistors.

For example, to connect UART0 DSR input signal 3 (U0DSR_in, signal index 8) to GPIO7, please follow the steps

below. Note that GPIO7 is also named as MTDO pin.

1. Set GPIO_SIG8_IN_SEL bit in register GPIO_FUNC8_IN_SEL_CFG_REG to enable peripheral signal input

via GPIO matrix.

2. Set GPIO_FUNC8_IN_SEL in register GPIO_FUNC8_IN_SEL_CFG_REG to 7, i.e. select GPIO7.

3. Set IO_MUX_GPIO7_FUN_IE in register IO_MUX_GPIO7_REG to enable pin input.

Note:

1. One input pin can be connected to multiple peripheral input signals.

2. The input signal can be inverted by configuring GPIO_FUNCy_IN_INV_SEL.

3. It is possible to have a peripheral read a constantly low or constantly high input value without connecting this input

to a pin. This can be done by selecting a special GPIO_FUNCy_IN_SEL input, instead of a GPIO number:

• When GPIO_FUNCy_IN_SEL is set to 0x1F, input signal is always 0.

• When GPIO_FUNCy_IN_SEL is set to 0x1E, input signal is always 1.

5.4.4 Simple GPIO Input

GPIO matrix can also be used for simple GPIO input. For this case, the input value of one GPIO pin can be read

at any time without routing the GPIO input to any peripherals. GPIO_IN_REG holds the input values of each GPIO

pin.

To implement simple GPIO input, follow the steps below:

Espressif Systems 117
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

• Set IO_MUX_GPIOx_FUN_IE in register IO_MUX_GPIOx_REG, to enable pin input.

• Read the GPIO input from GPIO_IN_REG[x].

5.5 Peripheral Output via GPIO Matrix

5.5.1 Overview

To output a signal from a peripheral via GPIO matrix, the matrix is configured to route peripheral output signals

(only signals with a name assigned in the column “Output signal” in Table 5-2) to one of the 21 GPIOs (0 ~ 20).

Note, for chip variants with SiP flash, output signals can only be mapped to 14 GPIO pins, i.e. GPIO0 ~ GPIO10,

GPIO18 ~ GPIO20.

The output signal is routed from the peripheral into GPIO matrix and then into IO MUX. IO MUX must be

configured to set the chosen pin to GPIO function. This enables the output GPIO signal to be connected to the

pin.

Note:

There is a range of peripheral output signals (97 ~ 100 in Table 5-2) which are not connected to any peripheral, but to

the input signals (97 ~ 100) directly. This feature can be used to input a signal from one GPIO pin and output directly to

another GPIO pin.

5.5.2 Functional Description

The 61 output signals (signals with a name assigned in the column “Output signal” in Table 5-2) can be set to go

through GPIO matrix into IO MUX and then to a pin. Figure 5-1 illustrates the configuration.

To output peripheral signal Y to a particular GPIO pin X1, follow these steps:

1. Configure register GPIO_FUNCx_OUT_SEL_CFG_REG and GPIO_ENABLE_REG[x] corresponding to GPIO

pin X in GPIO matrix. Recommended operation: use corresponding W1TS (write 1 to set) and W1TC (write

1 to clear) registers to set or clear GPIO_ENABLE_REG.

• Set the GPIO_FUNCx_OUT_SEL field in register GPIO_FUNCx_OUT_SEL_CFG_REG to the index of

the desired peripheral output signal Y.

• If the signal should always be enabled as an output, set the GPIO_FUNCx_OEN_SEL bit in register

GPIO_FUNCx_OUT_SEL_CFG_REG and the bit in register GPIO_ENABLE_W1TS_REG,

corresponding to GPIO pin X. To have the output enable signal decided by internal logic (for example,

the SPIQ_oe in column “Output enable signal when GPIO_FUNCn_OEN_SEL = 0” in Table 5-2), clear

GPIO_FUNCx_OEN_SEL bit instead.

• Set the corresponding bit in register GPIO_ENABLE_W1TC_REG to disable the output from the GPIO

pin.

2. For an open drain output, set the GPIO_PINx_PAD_DRIVER bit in register GPIO_PINx_REG corresponding

to GPIO pin X.

3. Configure IO MUX register to enable output via GPIO matrix. Set the IO_MUX_GPIOx_REG corresponding

to GPIO pin X as follows:

• Set the field IO_MUX_GPIOx_MCU_SEL to desired IO MUX function corresponding to GPIO pinX. This

is Function 1 (GPIO function), numeric value 1, for all pins.

Espressif Systems 118
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

• Set the IO_MUX_GPIOx_FUN_DRV field to the desired value for output strength (0 ~ 3). The higher the

driver strength, the more current can be sourced/sunk from the pin.

– 0: ~5 mA

– 1: ~10 mA

– 2: ~20 mA (default)

– 3: ~40 mA

• If using open drain mode, set/clear the IO_MUX_GPIOx_FUN_WPU and IO_MUX_GPIOx_FUN_WPD

bits to enable/disable the internal pull-up/pull-down resistors.

Note:

1. The output signal from a single peripheral can be sent to multiple pins simultaneously.

2. The output signal can be inverted by setting GPIO_FUNCx_OUT_INV_SEL bit.

5.5.3 Simple GPIO Output

GPIO matrix can also be used for simple GPIO output. For this case, one GPIO pin can be configured to directly

output desired value, without routing any peripheral output signal to this pin. This can be done as below:

• Set GPIO matrix GPIO_FUNCn_OUT_SEL with a special peripheral index 128 (0x80);

• Set the corresponding bit in GPIO_OUT_REG register to the desired GPIO output value.

Note:

• GPIO_OUT_REG[0] ~ GPIO_OUT_REG[20] correspond to GPIO0 ~ GPIO20, respectively. GPIO_OUT_REG[24:21]

are invalid.

• Recommended operation: use corresponding W1TS andW1TC registers, such as GPIO_OUT_W1TS/GPIO_OUT_

W1TC to set or clear the registers GPIO_OUT_REG.

5.6 Direct Input and Output via IO MUX

5.6.1 Overview

Some high speed digital signals (SPI and JTAG) can bypass GPIO matrix for better high-frequency digital

performance. In this case, IO MUX is used to connect these pins directly to peripherals.

This option is less flexible than routing signals via GPIO matrix, as the IO MUX register for each GPIO pin can only

select from a limited number of functions, but high-frequency digital performance can be improved.

5.6.2 Functional Description

Two registers must be configured in order to bypass GPIO matrix for peripheral input signals:

1. IO_MUX_GPIOn_MCU_SEL for the GPIO pin must be set to the required pin function. For the list of pin

functions, please refer to Section 5.12.

2. Clear GPIO_SIGn_IN_SEL to route the input directly to the peripheral.

Espressif Systems 119
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

To bypass GPIO matrix for peripheral output signals, IO_MUX_GPIOn_MCU_SEL for the GPIO pin must be set to

the required pin function.

Note:

Not all signals can be directly connected to peripheral via IO MUX. Some input/output signals can only be connected to

peripheral via GPIO matrix.

5.7 Analog Functions of GPIO Pins

Some GPIO pins in ESP8684 provide analog functions. When the pin is used for analog purpose, make sure that

pull-up and pull-down resistors are disabled by following configuration:

• Set IO_MUX_GPIOn_MCU_SEL to 1, and clear IO_MUX_GPIOn_FUN_IE, IO_MUX_GPIOn_FUN_WPU, IO_

MUX_GPIOn_FUN_WPD.

• Write 1 to GPIO_ENABLE_W1TC[n], to clear output enable.

See Table 5-4 for analog functions of ESP8684 pins.

5.8 Pin Functions in Light­sleep

Pins may provide different functions when ESP8684 is in Light-sleep mode. If IO_MUX_SLP_SEL in register

IO_MUX_n_REG for a GPIO pin is set to 1, a different set of bits will be used to control the pin when the chip is in

Light-sleep mode.

Table 5­1. Bits Used to Control IO MUX Functions in Light­sleep Mode

Normal Execution Light­sleep Mode
IO MUX Functions

OR IO_MUX_SLP_SEL = 0 AND IO_MUX_SLP_SEL = 1

Output Drive Strength IO_MUX_FUN_DRV IO_MUX_MCU_DRV

Pull-up Resistor IO_MUX_FUN_WPU IO_MUX_MCU_WPU

Pull-down Resistor IO_MUX_FUN_WPD IO_MUX_MCU_WPD

Output Enable OEN_SEL from GPIO matrix ∗ IO_MUX_MCU_OE

Note:

If IO_MUX_SLP_SEL is set to 0, pin functions remain the same in both normal execution and Light-sleep mode. Please

refer to Section 5.5.2 for how to enable output in normal execution.

5.9 Pin Hold Feature

Each GPIO pin (including the RTC pins: GPIO0 ~ GPIO5) has an individual hold function controlled by a RTC

register. When the pin is set to hold, the state is latched at that moment and will not change no matter how the

internal signals change or how the IO MUX/GPIO configuration is modified. Users can use the hold function for

the pins to retain the pin state through a core reset and system reset triggered by watchdog time-out or

Deep-sleep events.

Espressif Systems 120
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Note:

• For digital pins (GPIO6 ~ 20), tomaintain pin input/output status in Deep-sleepmode, users can set RTC_CNTL_DIG_

PAD_HOLD[n] in register RTC_CNTL_DIG_PAD_HOLD_REG to 1 before powering down. To disable the hold func-

tion after the chip is woken up, users can set RTC_CNTL_DIG_PAD_HOLD[n] to 0.

• For RTC pins (GPIO0 ~ 5), the input and output values are controlled by the corresponding bits of register RTC_CNTL
_RTC_PAD_HOLD_REG, and users can set it to 1 to hold the value or set it to 0 to unhold the value.

5.10 Power Supplies and Management of GPIO Pins

5.10.1 Power Supplies of GPIO Pins

For more information on the power supply for GPIO pins, please refer to Pin Definition in ESP8684 Datasheet. All

the pins can be used to wake up the chip from Light-sleep mode, but only the pins (GPIO0 ~ GPIO5) in

VDD3P3_RTC domain can be used to wake up the chip from Deep-sleep mode.

5.10.2 Power Supply Management

Each ESP8684 pin is connected to one of the two different power domains.

• VDD3P3_RTC: the input power supply for both RTC and CPU

• VDD3P3_CPU: the input power supply for CPU

5.11 Peripheral Signal List

Table 5-2 shows the peripheral input/output signals via GPIO matrix.

Please pay attention to the configuration of the bit GPIO_FUNCn_OEN_SEL:

• GPIO_FUNCn_OEN_SEL = 1: the output enable is controlled by the corresponding bit n of

GPIO_ENABLE_REG:

– GPIO_ENABLE_REG = 0: output is disabled;

– GPIO_ENABLE_REG = 1: output is enabled;

• GPIO_FUNCn_OEN_SEL = 0: use the output enable signal from peripheral, for example SPIQ_oe in the

column “Output enable signal when GPIO_FUNCn_OEN_SEL = 0” of Table 5-2. Note that the signals such

as SPIQ_oe can be 1 (1’d1) or 0 (1’d0), depending on the configuration of corresponding peripherals. If it’s

1’d1 in the “Output enable signal when GPIO_FUNCn_OEN_SEL = 0”, it indicates that once the register

GPIO_FUNCn_OEN_SEL is cleared, the output signal is always enabled by default.

Note:

Signals are numbered consecutively, but not all signals are valid.

• Only the signals with a name assigned in the column “Input signal” in Table 5-2 are valid input signals.

• Only the signals with a name assigned in the column “Output signal” in Table 5-2 are valid output signals.

Espressif Systems 121
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/sites/default/files/documentation/esp8684_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

5
IO

M
U
X
and

G
P
IO

M
atrix

(G
P
IO
,IO

M
U
X)

GoBack

Table 5­2. Peripheral Signals via GPIO Matrix

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

0 SPIQ_in 0 yes SPIQ_out SPIQ_oe yes

1 SPID_in 0 yes SPID_out SPID_oe yes

2 SPIHD_in 0 yes SPIHD_out SPIHD_oe yes

3 SPIWP_in 0 yes SPIWP_out SPIWP_oe yes

4 - - - SPICLK_out_mux SPICLK_oe yes

5 - - - SPICS0_out SPICS0_oe yes

6 U0RXD_in 0 yes U0TXD_out 1’d1 yes

7 U0CTS_in 0 no U0RTS_out 1’d1 no

8 U0DSR_in 0 no U0DTR_out 1’d1 no

9 U1RXD_in 0 no U1TXD_out 1’d1 no

10 U1CTS_in 0 no U1RTS_out 1’d1 no

11 U1DSR_in 0 no U1DTR_out 1’d1 no

12 - - - - - -

13 - - - - - -

14 - - - - - -

15 - - - SPIQ_monitor 1’d1 no

16 - - - SPID_monitor 1’d1 no

17 - - - SPIHD_monitor 1’d1 no

18 - - - SPIWP_monitor 1’d1 no

19 - - - SPICS1_out SPICS1_oe no

20 - - - - - -

21 - - - - - -

22 - - - - - -

23 - - - - - -

24 - - - - - -

E
spressifS

ystem
s

122
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

5
IO

M
U
X
and

G
P
IO

M
atrix

(G
P
IO
,IO

M
U
X)

GoBack

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

25 - - - - - -

26 - - - - - -

27 - - - - - -

28 cpu_gpio_in0 0 no cpu_gpio_out0 cpu_gpio_out_oen0 no

29 cpu_gpio_in1 0 no cpu_gpio_out1 cpu_gpio_out_oen1 no

30 cpu_gpio_in2 0 no cpu_gpio_out2 cpu_gpio_out_oen2 no

31 cpu_gpio_in3 0 no cpu_gpio_out3 cpu_gpio_out_oen3 no

32 cpu_gpio_in4 0 no cpu_gpio_out4 cpu_gpio_out_oen4 no

33 cpu_gpio_in5 0 no cpu_gpio_out5 cpu_gpio_out_oen5 no

34 cpu_gpio_in6 0 no cpu_gpio_out6 cpu_gpio_out_oen6 no

35 cpu_gpio_in7 0 no cpu_gpio_out7 cpu_gpio_out_oen7 no

36 - - - - - -

37 - - - - - -

38 - - - - - -

39 - - - - - -

40 - - - - - -

41 - - - - - -

42 - - - - - -

43 - - - - - -

44 - - - - - -

45 ext_adc_start 0 no ledc_ls_sig_out0 1’d1 no

46 - - - ledc_ls_sig_out1 1’d1 no

47 - - - ledc_ls_sig_out2 1’d1 no

48 - - - ledc_ls_sig_out3 1’d1 no

49 - - - ledc_ls_sig_out4 1’d1 no

50 - - - ledc_ls_sig_out5 1’d1 no

51 - - - - - -

E
spressifS

ystem
s

123
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

5
IO

M
U
X
and

G
P
IO

M
atrix

(G
P
IO
,IO

M
U
X)

GoBack

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

52 - - - - - -

53 I2CEXT0_SCL_in 1 no I2CEXT0_SCL_out I2CEXT0_SCL_oe no

54 I2CEXT0_SDA_in 1 no I2CEXT0_SDA_out I2CEXT0_SDA_oe no

55 - - - - - -

56 - - - - - -

57 - - - - - -

58 - - - - - -

59 - - - - - -

60 - - - - - -

61 - - - - - -

62 - - - - - -

63 FSPICLK_in 0 yes FSPICLK_out_mux FSPICLK_oe yes

64 FSPIQ_in 0 yes FSPIQ_out FSPIQ_oe yes

65 FSPID_in 0 yes FSPID_out FSPID_oe yes

66 FSPIHD_in 0 yes FSPIHD_out FSPIHD_oe yes

67 FSPIWP_in 0 yes FSPIWP_out FSPIWP_oe yes

68 FSPICS0_in 0 yes FSPICS0_out FSPICS0_oe yes

69 - - - FSPICS1_out FSPICS1_oe no

70 - - - FSPICS2_out FSPICS2_oe no

71 - - - FSPICS3_out FSPICS3_oe no

72 - - - FSPICS4_out FSPICS4_oe no

73 - - - FSPICS5_out FSPICS5_oe no

74 - - - - - -

75 - - - - - -

76 - - - - - -

77 - - - - - -

78 - - - - - -

E
spressifS

ystem
s

124
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

5
IO

M
U
X
and

G
P
IO

M
atrix

(G
P
IO
,IO

M
U
X)

GoBack

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

79 - - - - - -

80 - - - - - -

81 - - - - - -

82 - - - - - -

83 - - - - - -

84 - - - - - -

85 - - - - - -

86 - - - - - -

87 - - - - - -

88 - - - - - -

89 - - - ant_sel0 1’d1 no

90 - - - ant_sel1 1’d1 no

91 - - - ant_sel2 1’d1 no

92 - - - ant_sel3 1’d1 no

93 - - - ant_sel4 1’d1 no

94 - - - ant_sel5 1’d1 no

95 - - - ant_sel6 1’d1 no

96 - - - ant_sel7 1’d1 no

97 sig_in_func_97 0 no sig_in_func97 1’d1 no

98 sig_in_func_98 0 no sig_in_func98 1’d1 no

99 sig_in_func_99 0 no sig_in_func99 1’d1 no

100 sig_in_func_100 0 no sig_in_func100 1’d1 no

101 - - - - - -

102 - - - - - -

103 - - - - - -

104 - - - - - -

105 - - - - - -

E
spressifS

ystem
s

125
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

5
IO

M
U
X
and

G
P
IO

M
atrix

(G
P
IO
,IO

M
U
X)

GoBack

Signal

No.
Input Signal

Default

value

Direct

Input via

IO MUX

Output Signal
Output enable signal when

GPIO_FUNCn_OEN_SEL = 0

Direct

Output via

IO MUX

106 - - - - - -

107 - - - - - -

108 - - - - - -

109 - - - - - -

110 - - - - - -

111 - - - - - -

112 - - - - - -

113 - - - - - -

114 - - - - - -

115 - - - - - -

116 - - - - - -

117 - - - - - -

118 - - - - - -

119 - - - - - -

120 - - - - - -

121 - - - - - -

122 - - - - - -

123 - - - CLK_OUT_out1 1’d1 no

124 - - - CLK_OUT_out2 1’d1 no

125 - - - CLK_OUT_out3 1’d1 no

126 - - - - - -

127 - - - - - -

E
spressifS

ystem
s

126
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

5.12 IO MUX Functions List

Table 5-3 shows the IO MUX functions of each pin.

Table 5­3. IO MUX Pin Functions

Pin

No.

Pin Name Function 0 Function 1 Function 2 Function 3 DRV Reset Note

0 GPIO0 GPIO0 GPIO0 - - 2 0 R

1 GPIO1 GPIO1 GPIO1 - - 2 0 R

2 GPIO2 GPIO2 GPIO2 FSPIQ - 2 1 R

3 GPIO3 GPIO3 GPIO3 - - 2 1 R

4 MTMS MTMS GPIO4 FSPIHD - 2 1 R

5 MTDI MTDI GPIO5 FSPIWP - 2 1 R

6 MTCK MTCK GPIO6 FSPICLK - 2 1* -

7 MTDO MTDO GPIO7 FSPID - 2 1 -

8 GPIO8 GPIO8 GPIO8 - - 2 1 -

9 GPIO9 GPIO9 GPIO9 - - 2 3 -

10 GPIO10 GPIO10 GPIO10 FSPICS0 - 2 1 -

11 VDD_SPI GPIO11 GPIO11 - - 2 0 S

12 SPIHD SPIHD GPIO12 - - 2 3 S

13 SPIWP SPIWP GPIO13 - - 2 3 S

14 SPICS0 SPICS0 GPIO14 - - 2 3 S

15 SPICLK SPICLK GPIO15 - - 2 3 S

16 SPID SPID GPIO16 - - 2 3 S

17 SPIQ SPIQ GPIO17 - - 2 3 S

18 GPIO18 GPIO18 GPIO18 - - 2 0 -

19 U0RXD U0RXD GPIO19 - - 2 3 -

20 U0TXD U0TXD GPIO20 - - 2 4 -

Drive Strength

“DRV” column shows the drive strength of each pin after reset:

• 0 - Drive current = ~5 mA

• 1 - Drive current = ~10 mA

• 2 - Drive current = ~20 mA (default)

• 3 - Drive current = ~40 mA

Reset Configurations

“Reset” column shows the default configuration of each pin after reset:

• 0 - IE = 0 (input disabled)

• 1 - IE = 1 (input enabled)

• 2 - IE = 1, WPD = 1 (input enabled, pull-down resistor enabled)

• 3 - IE = 1, WPU = 1 (input enabled, pull-up resistor enabled)

Espressif Systems 127
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

• 4 - OE = 1, WPU = 1 (output enabled, pull-up resistor enabled)

• 1* - If eFuse bit EFUSE_DIS_PAD_JTAG = 1, the pin MTCK is left floating after reset, i.e. IE = 1. If eFuse bit

EFUSE_DIS_PAD_JTAG = 0, the pin MTCK is connected to internal pull-up resistor, i.e. IE = 1, WPU = 1.

Note:

• R - Pins in VDD3P3_RTC domain, and part of them have analog functions, see Table 5-4.

• S - For chip variants with SiP flash, these pins are only used to connect SiP flash, i.e. only Function 0 is

available. For chip variants without SiP flash, these pins can be used as normal pins, i.e. all the functions

are available.

5.13 Analog Functions List

Table 5-4 shows the IO MUX pins with analog functions.

Table 5­4. Analog Functions of IO MUX Pins

GPIO No. Pin Name Analog Function

0 GPIO0 ADC1_CH0

1 GPIO1 ADC1_CH1

2 GPIO2 ADC1_CH2

3 GPIO3 ADC1_CH3

4 MTMS ADC1_CH4

5 MTDI ADC2_CH0

5.14 Register Summary

5.14.1 GPIO Matrix Register Summary

The addresses in this section are relative to GPIO base address provided in Table 3-3 in Chapter 3 System and

Memory.

Note: For chip variants with SiP flash, only 14 GPIO pins are available, i.e. GPIO0 ~ GPIO10 and GPIO18 ~
GPIO20. For this case:

• Configuration Registers: can only be configured for GPIO0 ~ GPIO10 and GPIO18 ~ GPIO20;

• Pin Configuration Registers: only GPIO_PIN0_REG ~ GPIO_PIN10_REG and GPIO_PIN18_REG ~ GPIO_

PIN20_REG are available;

• Input Configuration Registers: can only be configured for GPIO0 ~ GPIO10 and GPIO18 ~ GPIO20;

• Output Configuration Registers: only GPIO_FUNC0_OUT_SEL_CFG_REG ~ GPIO_FUNC10_OUT_SEL_

CFG_REG and GPIO_PIN18_OUT_SEL_CFG_REG ~ GPIO_PIN20_OUT_SEL_CFG_REG are available;

Name Description Address Access

Configuration Registers

GPIO_OUT_REG GPIO output register 0x0004 R/W/SS

GPIO_OUT_W1TS_REG GPIO output set register 0x0008 WT

GPIO_OUT_W1TC_REG GPIO output clear register 0x000C WT

Espressif Systems 128
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Name Description Address Access

GPIO_ENABLE_REG GPIO output enable register 0x0020 R/W/SS

GPIO_ENABLE_W1TS_REG GPIO output enable set register 0x0024 WT

GPIO_ENABLE_W1TC_REG GPIO output enable clear register 0x0028 WT

GPIO_STRAP_REG Pin strapping register 0x0038 RO

GPIO_IN_REG GPIO input register 0x003C RO

GPIO_STATUS_REG GPIO interrupt status register 0x0044 R/W/SS

GPIO_STATUS_W1TS_REG GPIO interrupt status set register 0x0048 WT

GPIO_STATUS_W1TC_REG GPIO interrupt status clear register 0x004C WT

GPIO_PCPU_INT_REG GPIO CPU interrupt status register 0x005C RO

GPIO_PCPU_NMI_INT_REG GPIO CPU (non-maskable) interrupt status reg-

ister

0x0060 RO

GPIO_STATUS_NEXT_REG GPIO interrupt source register 0x014C RO

Pin Configuration Registers

GPIO_PIN0_REG GPIO pin 0 configuration register 0x0074 R/W

GPIO_PIN1_REG GPIO pin 1 configuration register 0x0078 R/W

GPIO_PIN2_REG GPIO pin 2 configuration register 0x007C R/W

GPIO_PIN3_REG GPIO pin 3 configuration register 0x0080 R/W

GPIO_PIN4_REG GPIO pin 4 configuration register 0x0084 R/W

GPIO_PIN5_REG GPIO pin 5 configuration register 0x0088 R/W

GPIO_PIN6_REG GPIO pin 6 configuration register 0x008C R/W

GPIO_PIN7_REG GPIO pin 7 configuration register 0x0090 R/W

GPIO_PIN8_REG GPIO pin 8 configuration register 0x0094 R/W

GPIO_PIN9_REG GPIO pin 9 configuration register 0x0098 R/W

GPIO_PIN10_REG GPIO pin 10 configuration register 0x009C R/W

GPIO_PIN11_REG GPIO pin 11 configuration register 0x00A0 R/W

GPIO_PIN12_REG GPIO pin 12 configuration register 0x00A4 R/W

GPIO_PIN13_REG GPIO pin 13 configuration register 0x00A8 R/W

GPIO_PIN14_REG GPIO pin 14 configuration register 0x00AC R/W

GPIO_PIN15_REG GPIO pin 15 configuration register 0x00B0 R/W

GPIO_PIN16_REG GPIO pin 16 configuration register 0x00B4 R/W

GPIO_PIN17_REG GPIO pin 17 configuration register 0x00B8 R/W

GPIO_PIN18_REG GPIO pin 18 configuration register 0x00BC R/W

GPIO_PIN19_REG GPIO pin 19 configuration register 0x00C0 R/W

GPIO_PIN20_REG GPIO pin 20 configuration register 0x00C4 R/W

Input Function Configuration Registers

GPIO_FUNC0_IN_SEL_CFG_REG Configuration register for input signal 0 0x0154 R/W

GPIO_FUNC1_IN_SEL_CFG_REG Configuration register for input signal 1 0x0158 R/W

...

GPIO_FUNC126_IN_SEL_CFG_REG Configuration register for input signal 126 0x034C R/W

GPIO_FUNC127_IN_SEL_CFG_REG Configuration register for input signal 127 0x0350 R/W

Output Function Configuration Registers

GPIO_FUNC0_OUT_SEL_CFG_REG Configuration register for GPIO0 output 0x0554 R/W

GPIO_FUNC1_OUT_SEL_CFG_REG Configuration register for GPIO1 output 0x0558 R/W

Espressif Systems 129
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Name Description Address Access

GPIO_FUNC2_OUT_SEL_CFG_REG Configuration register for GPIO2 output 0x055C R/W

GPIO_FUNC3_OUT_SEL_CFG_REG Configuration register for GPIO3 output 0x0560 R/W

GPIO_FUNC4_OUT_SEL_CFG_REG Configuration register for GPIO4 output 0x0564 R/W

GPIO_FUNC5_OUT_SEL_CFG_REG Configuration register for GPIO5 output 0x0568 R/W

GPIO_FUNC6_OUT_SEL_CFG_REG Configuration register for GPIO6 output 0x056C R/W

GPIO_FUNC7_OUT_SEL_CFG_REG Configuration register for GPIO7 output 0x0570 R/W

GPIO_FUNC8_OUT_SEL_CFG_REG Configuration register for GPIO8 output 0x0574 R/W

GPIO_FUNC9_OUT_SEL_CFG_REG Configuration register for GPIO9 output 0x0578 R/W

GPIO_FUNC10_OUT_SEL_CFG_REG Configuration register for GPIO10 output 0x057C R/W

GPIO_FUNC11_OUT_SEL_CFG_REG Configuration register for GPIO11 output 0x0580 R/W

GPIO_FUNC12_OUT_SEL_CFG_REG Configuration register for GPIO12 output 0x0584 R/W

GPIO_FUNC13_OUT_SEL_CFG_REG Configuration register for GPIO13 output 0x0588 R/W

GPIO_FUNC14_OUT_SEL_CFG_REG Configuration register for GPIO14 output 0x058C R/W

GPIO_FUNC15_OUT_SEL_CFG_REG Configuration register for GPIO15 output 0x0590 R/W

GPIO_FUNC16_OUT_SEL_CFG_REG Configuration register for GPIO16 output 0x0594 R/W

GPIO_FUNC17_OUT_SEL_CFG_REG Configuration register for GPIO17 output 0x0598 R/W

GPIO_FUNC18_OUT_SEL_CFG_REG Configuration register for GPIO18 output 0x059C R/W

GPIO_FUNC19_OUT_SEL_CFG_REG Configuration register for GPIO19 output 0x05A0 R/W

GPIO_FUNC20_OUT_SEL_CFG_REG Configuration register for GPIO20 output 0x05A4 R/W

Version Register

GPIO_DATE_REG GPIO version register 0x06FC R/W

Clock Gate Register

GPIO_CLOCK_GATE_REG GPIO clock gate register 0x062C R/W

5.14.2 IO MUX Register Summary

The addresses in this section are relative to the IO MUX base address provided in Table 3-3 in Chapte 3 System

and Memory .

Note: For chip variants with SiP flash, only 14 GPIO pins are available, i.e. GPIO0 ~ GPIO10 and GPIO18 ~
GPIO20. For this case, IO_MUX_GPIO11_REG ~ IO_MUX_GPIO17_REG are not configurable.

Name Description Address Access

Configuration Registers

IO_MUX_PIN_CTRL_REG Clock output configuration Register 0x0000 R/W

IO_MUX_GPIO0_REG IO MUX configuration register for pin GPIO0 0x0004 R/W

IO_MUX_GPIO1_REG IO MUX configuration register for pin GPIO1 0x0008 R/W

IO_MUX_GPIO2_REG IO MUX configuration register for pin GPIO2 0x000C R/W

IO_MUX_GPIO3_REG IO MUX configuration register for pin GPIO3 0x0010 R/W

IO_MUX_GPIO4_REG IO MUX configuration register for pin MTMS 0x0014 R/W

IO_MUX_GPIO5_REG IO MUX configuration register for pin MTDI 0x0018 R/W

IO_MUX_GPIO6_REG IO MUX configuration register for pin MTCK 0x001C R/W

IO_MUX_GPIO7_REG IO MUX configuration register for pin MTDO 0x0020 R/W

IO_MUX_GPIO8_REG IO MUX configuration register for pin GPIO8 0x0024 R/W

IO_MUX_GPIO9_REG IO MUX configuration register for pin GPIO9 0x0028 R/W

Espressif Systems 130
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Name Description Address Access

IO_MUX_GPIO10_REG IO MUX configuration register for pin GPIO10 0x002C R/W

IO_MUX_GPIO11_REG IO MUX configuration register for pin VDD_SPI 0x0030 R/W

IO_MUX_GPIO12_REG IO MUX configuration register for pin SPIHD 0x0034 R/W

IO_MUX_GPIO13_REG IO MUX configuration register for pin SPIWP 0x0038 R/W

IO_MUX_GPIO14_REG IO MUX configuration register for pin SPICS0 0x003C R/W

IO_MUX_GPIO15_REG IO MUX configuration register for pin SPICLK 0x0040 R/W

IO_MUX_GPIO16_REG IO MUX configuration register for pin SPID 0x0044 R/W

IO_MUX_GPIO17_REG IO MUX configuration register for pin SPIQ 0x0048 R/W

IO_MUX_GPIO18_REG IO MUX configuration register for pin GPIO18 0x004C R/W

IO_MUX_GPIO19_REG IO MUX configuration register for pin U0RXD 0x0050 R/W

IO_MUX_GPIO20_REG IO MUX configuration register for pin U0TXD 0x0054 R/W

Version Register

IO_MUX_DATE_REG IO MUX Version Control Register 0x00FC R/W

5.15 Registers

5.15.1 GPIO Matrix Registers

The addresses in this section are relative to GPIO base address provided in Table 3-3 in Chapter 3 System and

Memory.

Register 5.1. GPIO_OUT_REG (0x0004)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_O
UT
_D
AT
A_
OR
IG

0x00000

24 0

Reset

GPIO_OUT_DATA_ORIG GPIO0 ~ 20 output value in simple GPIO output mode. The values of bit0 ~
bit20 correspond to the output value of GPIO0 ~ GPIO20 respectively, and bit21 ~ bit24 are invalid.
(R/W/SS)

Espressif Systems 131
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Register 5.2. GPIO_OUT_W1TS_REG (0x0008)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_O
UT
_W
1T
S

0x00000

24 0

Reset

GPIO_OUT_W1TS GPIO0 ~ 20 output set register. Bit0 ~ bit20 are corresponding to GPIO0

~ 20, and bit21 ~ bit24 are invalid. If the value 1 is written to a bit here, the correspond-

ing bit in GPIO_OUT_REG will be set to 1. Recommended operation: use this register to set

GPIO_OUT_REG. (WT)

Register 5.3. GPIO_OUT_W1TC_REG (0x000C)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_O
UT
_W
1T
C

0x00000

24 0

Reset

GPIO_OUT_W1TC GPIO0 ~ 20 output clear register. Bit0 ~ bit20 are corresponding to GPIO0

~ 20, and bit21 ~ bit24 are invalid. If the value 1 is written to a bit here, the correspond-

ing bit in GPIO_OUT_REG will be cleared. Recommended operation: use this register to clear

GPIO_OUT_REG. (WT)

Register 5.4. GPIO_ENABLE_REG (0x0020)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_E
NA
BL
E_
DA
TA

0x00000

24 0

Reset

GPIO_ENABLE_DATA GPIO output enable register for GPIO0 ~ 20. Bit0 ~ bit20 are corresponding

to GPIO0 ~ 20, and bit21 ~ bit24 are invalid. (R/W/SS)

Espressif Systems 132
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Register 5.5. GPIO_ENABLE_W1TS_REG (0x0024)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_E
NA
BL
E_
W
1T
S

0x00000

24 0

Reset

GPIO_ENABLE_W1TS GPIO0 ~ 20 output enable set register. Bit0 ~ bit20 are corresponding to

GPIO0 ~ 20, and bit21 ~ bit24 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_ENABLE_REG will be set to 1. Recommended operation: use this register to set

GPIO_ENABLE_REG. (WT)

Register 5.6. GPIO_ENABLE_W1TC_REG (0x0028)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_E
NA
BL
E_
W
1T
C

0x00000

24 0

Reset

GPIO_ENABLE_W1TC GPIO0 ~ 20 output enable clear register. Bit0 ~ bit20 are corresponding to

GPIO0 ~ 20, and bit21 ~ bit24 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_ENABLE_REG will be cleared. Recommended operation: use this register to clear

GPIO_ENABLE_REG. (WT)

Register 5.7. GPIO_STRAP_REG (0x0038)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

GP
IO
_S
TR
AP
PI
NG

0x00

15 0

Reset

GPIO_STRAPPING GPIO strapping values. (RO)

• bit 2: GPIO8

• bit 3: GPIO9

Espressif Systems 133
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Register 5.8. GPIO_IN_REG (0x003C)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_IN
_D
AT
A_
NE
XT

0x00000

24 0

Reset

GPIO_IN_DATA_NEXT GPIO0 ~ 20 input value. Bit0 ~ bit20 are corresponding to GPIO0 ~ 20, and

bit21 ~ bit24 are invalid. Each bit represents a pin input value, 1 for high level and 0 for low level.

(RO)

Register 5.9. GPIO_STATUS_REG (0x0044)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_S
TA
TU
S_
IN
TE
RR
UP
T

0x00000

24 0

Reset

GPIO_STATUS_INTERRUPT GPIO0 ~ 20 interrupt status register. Bit0 ~ bit20 are corresponding to

GPIO0 ~ 20, and bit21 ~ bit24 are invalid. (R/W/SS)

Register 5.10. GPIO_STATUS_W1TS_REG (0x0048)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_S
TA
TU
S_
W
1T
S

0x00000

24 0

Reset

GPIO_STATUS_W1TS GPIO0 ~ 20 interrupt status set register. Bit0 ~ bit20 are corresponding to

GPIO0 ~ 20, and bit21 ~ bit24 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_STATUS_INTERRUPT will be set to 1. Recommended operation: use this register to

set GPIO_STATUS_INTERRUPT. (WT)

Espressif Systems 134
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Register 5.11. GPIO_STATUS_W1TC_REG (0x004C)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_S
TA
TU
S_
W
1T
C

0x00000

24 0

Reset

GPIO_STATUS_W1TC GPIO0 ~ 20 interrupt status clear register. Bit0 ~ bit20 are corresponding to

GPIO0 ~ 20, and bit21 ~ bit24 are invalid. If the value 1 is written to a bit here, the corresponding

bit in GPIO_STATUS_INTERRUPT will be cleared. Recommended operation: use this register to

clear GPIO_STATUS_INTERRUPT. (WT)

Register 5.12. GPIO_PCPU_INT_REG (0x005C)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_P
RO
CP
U_
IN
T

0x00000

24 0

Reset

GPIO_PROCPU_INT GPIO0 ~ 20 CPU interrupt status. Bit0 ~ bit20 are corresponding to GPIO0

~ 20, and bit21 ~ bit24 are invalid. This interrupt status is corresponding to the bit in

GPIO_STATUS_REG when assert (high) enable signal (bit13 of GPIO_PINn_REG). (RO)

Register 5.13. GPIO_PCPU_NMI_INT_REG (0x0060)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_P
RO
CP
U_
NM

I_I
NT

0x00000

24 0

Reset

GPIO_PROCPU_NMI_INT GPIO0 ~ 20 CPU non-maskable interrupt status. Bit0 ~ bit20 are corre-

sponding to GPIO0 ~ 20, and bit21 ~ bit24 are invalid. This interrupt status is corresponding to

the bit in GPIO_STATUS_REG when assert (high) enable signal (bit 14 of GPIO_PINn_REG). (RO)

Espressif Systems 135
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Register 5.14. GPIO_PINn_REG (n: 0­20) (0x0074+4*n)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

GP
IO
_P
IN
n_
IN
T_
EN
A

0x0

17 13

GP
IO
_P
IN
n_
CO
NF
IG

0x0

12 11

GP
IO
_P
IN
n_
W
AK
EU
P_
EN
AB
LE

0

10

GP
IO
_P
IN
n_
IN
T_
TY
PE

0x0

9 7

(re
se
rve
d)

0 0

6 5

GP
IO
_P
IN
n_
SY
NC
1_
BY
PA
SS

0x0

4 3

GP
IO
_P
IN
n_
PA
D_
DR
IVE
R

0

2

GP
IO
_P
IN
n_
SY
NC
2_
BY
PA
SS

0x0

1 0

Reset

GPIO_PINn_SYNC2_BYPASS For the second-level synchronization, GPIO input data can be syn-

chronized on either edge of the APB clock. 0: no synchronization; 1: synchronized on falling

edge; 2 and 3: synchronized on rising edge. (R/W)

GPIO_PINn_PAD_DRIVER Pin drive selection. 0: normal output; 1: open drain output. (R/W)

GPIO_PINn_SYNC1_BYPASS For the first-level synchronization, GPIO input data can be synchro-

nized on either edge of the APB clock. 0: no synchronization; 1: synchronized on falling edge; 2

and 3: synchronized on rising edge. (R/W)

GPIO_PINn_INT_TYPE Interrupt type selection. 0: GPIO interrupt disabled; 1: rising edge trigger; 2:

falling edge trigger; 3: any edge trigger; 4: low level trigger; 5: high level trigger. (R/W)

GPIO_PINn_WAKEUP_ENABLE GPIO wake-up enable bit, only wakes up the CPU from Light-sleep.

(R/W)

GPIO_PINn_CONFIG reserved (R/W)

GPIO_PINn_INT_ENA Interrupt enable bits. bit13: CPU interrupt enabled; bit14: CPU non-maskable

interrupt enabled. (R/W)

Register 5.15. GPIO_STATUS_NEXT_REG (0x014C)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

GP
IO
_S
TA
TU
S_
IN
TE
RR
UP
T_
NE
XT

0x00000

24 0

Reset

GPIO_STATUS_INTERRUPT_NEXT Interrupt source signal of GPIO0 ~ 20, could be rising edge in-

terrupt, falling edge interrupt, level sensitive interrupt and any edge interrupt. Bit0 ~ bit20 are

corresponding to GPIO0 ~ 20, and bit21 ~ bit24 are invalid. (RO)

Espressif Systems 136
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Register 5.16. GPIO_FUNCn_IN_SEL_CFG_REG (n: 0­127) (0x0154+4*n)

(re
se
rve
d)

0 0

31 7

GP
IO
_S
IG
n_
IN
_S
EL

0

6

GP
IO
_F
UN
Cn
_IN
_IN
V_
SE
L

0

5

GP
IO
_F
UN
Cn
_IN
_S
EL

0x0

4 0

Reset

GPIO_FUNCn_IN_SEL Selection control for peripheral input signal n, selects a pin from the 21 GPIO

matrix pins to connect this input signal. Or selects 0x1E for a constantly high input or 0x1F for a

constantly low input. (R/W)

GPIO_FUNCn_IN_INV_SEL Invert the input value. 1: invert enabled; 0: invert disabled. (R/W)

GPIO_SIGn_IN_SEL Bypass GPIO matrix. 1: route signals via GPIO matrix, 0: connect signals di-

rectly to peripheral configured in IO MUX. (R/W)

Register 5.17. GPIO_FUNCn_OUT_SEL_CFG_REG (n: 0­20) (0x0554+4*n)

(re
se
rve
d)

0 0

31 11

GP
IO
_F
UN
Cn
_O
EN
_IN
V_
SE
L

0

10

GP
IO
_F
UN
Cn
_O
EN
_S
EL

0

9

GP
IO
_F
UN
Cn
_O
UT
_IN
V_
SE
L

0

8

GP
IO
_F
UN
Cn
_O
UT
_S
EL

0x80

7 0

Reset

GPIO_FUNCn_OUT_SEL Selection control for GPIO output n. If a value Y (0<=Y<128) is written to

this field, the peripheral output signal Y will be connected to GPIO output n. If a value 128 is written

to this field, bit n of GPIO_OUT_REG and GPIO_ENABLE_REG will be selected as the output value

and output enable. (R/W)

GPIO_FUNCn_OUT_INV_SEL 0: Do not invert the output value; 1: Invert the output value. (R/W)

GPIO_FUNCn_OEN_SEL 0: Use output enable signal from peripheral; 1: Force the output enable

signal to be sourced from bit n of GPIO_ENABLE_REG. (R/W)

GPIO_FUNCn_OEN_INV_SEL 0: Do not invert the output enable signal; 1: Invert the output enable

signal. (R/W)

Espressif Systems 137
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Register 5.18. GPIO_CLOCK_GATE_REG (0x062C)

(re
se
rve
d)

0 0

31 1

GP
IO
_C
LK
_E
N

1

0

Reset

GPIO_CLK_EN Clock gating enable bit. If set to 1, the clock is free running. (R/W)

Register 5.19. GPIO_DATE_REG (0x06FC)

(re
se
rve
d)

0 0 0 0

31 28

GP
IO
_D
AT
E_
RE
G

0x2006130

27 0

Reset

GPIO_DATE_REG Version control register (R/W)

5.15.2 IO MUX Registers

The addresses in this section are relative to the IO MUX base address provided in Table 3-3 in Chapte 3 System

and Memory .

Register 5.20. IO_MUX_PIN_CTRL_REG (0x0000)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

IO
_M
UX
_C
LK
_O
UT
3

0x7

11 8

IO
_M
UX
_C
LK
_O
UT
2

0xf

7 4

IO
_M
UX
_C
LK
_O
UT
1

0xf

3 0

Reset

IO_MUX_CLK_OUTx If you want to output clock for I2S to CLK_OUT_outx, set IO_MUX_CLK_OUTx

to 0x0. CLK_OUT_outx can be found in Table 5-2. (R/W)

Espressif Systems 138
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Register 5.21. IO_MUX_GPIOn_REG (n: 0­20) (0x0004+4*n)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

IO
_M
UX
_G
PI
On
_F
ILT
ER
_E
N

0

15

IO
_M
UX
_G
PI
On
_M
CU
_S
EL

0x0

14 12

IO
_M
UX
_G
PI
On
_F
UN
_D
RV

0x2

11 10

IO
_M
UX
_G
PI
On
_F
UN
_IE

1

9

IO
_M
UX
_G
PI
On
_F
UN
_W
PU

1

8

IO
_M
UX
_G
PI
On
_F
UN
_W
PD

0

7

IO
_M
UX
_G
PI
On
_M
CU
_D
RV

0 0

6 5

IO
_M
UX
_G
PI
On
_M
CU
_IE

0

4

IO
_M
UX
_G
PI
On
_M
CU
_W
PU

0

3

IO
_M
UX
_G
PI
On
_M
CU
_W
PD

0

2

IO
_M
UX
_G
PI
On
_S
LP
_S
EL

0

1

IO
_M
UX
_G
PI
On
_M
CU
_O
E

0

0

Reset

IO_MUX_GPIOn_MCU_OE Output enable of the pin in sleep mode. 1: output enabled; 0: output

disabled. (R/W)

IO_MUX_GPIOn_SLP_SEL Sleep mode selection of this pin. Set to 1 to put the pin in sleep mode.

(R/W)

IO_MUX_GPIOn_MCU_WPD Pull-down enable of the pin in sleep mode. 1: internal pull-down en-

abled; 0: internal pull-down disabled. (R/W)

IO_MUX_GPIOn_MCU_WPU Pull-up enable of the pin during sleep mode. 1: internal pull-up en-

abled; 0: internal pull-up disabled. (R/W)

IO_MUX_GPIOn_MCU_IE Input enable of the pin during sleep mode. 1: input enabled; 0: input

disabled. (R/W)

IO_MUX_GPIOn_MCU_DRV Configures the drive strength of GPIOn during sleep mode.

0: ~5 mA

1: ~ 10 mA

2: ~ 20 mA

3: ~40 mA

(R/W)

IO_MUX_GPIOn_FUN_WPD Pull-down enable of the pin. 1: internal pull-down enabled; 0: internal

pull-down disabled. (R/W)

IO_MUX_GPIOn_FUN_WPU Pull-up enable of the pin. 1: internal pull-up enabled; 0: internal pull-up

disabled. (R/W)

IO_MUX_GPIOn_FUN_IE Input enable of the pin. 1: input enabled; 0: input disabled. (R/W)

IO_MUX_GPIOn_FUN_DRV Select the drive strength of the pin. 0: ~ 5 mA; 1: ~ 10 mA; 2: ~ 20 mA;

3: ~ 40 mA. (R/W)

IO_MUX_GPIOn_MCU_SEL Select IO MUX function for this pin. 0: Select Function 0; 1: Select

Function 1; etc. (R/W)

IO_MUX_GPIOn_FILTER_EN Enable filter for pin input signals. 1: filter enabled; 0: filter disabled.

(R/W)

Espressif Systems 139
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

5 IO MUX and GPIO Matrix (GPIO, IO MUX) GoBack

Register 5.22. IO_MUX_DATE_REG (0x00FC)

(re
se
rve
d)

0 0 0 0

31 28

IO
_M
UX
_D
AT
E_
RE
G

0x2006050

27 0

Reset

IO_MUX_DATE_REG Version control register (R/W)

Espressif Systems 140
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

6 Reset and Clock GoBack

6 Reset and Clock

6.1 Reset

6.1.1 Overview

ESP8684 provides four types of reset that occur at different levels, namely CPU Reset, Core Reset, System

Reset, and Chip Reset. All reset types mentioned above (except Chip Reset) maintain the data stored in internal

memory. Figure 6-1 shows the scope of affected subsystems by each type of reset.

6.1.2 Architectural Overview

Figure 6­1. Reset Types

6.1.3 Features

• Support four reset types:

– CPU Reset: Only resets CPU core. Once such reset is released, the instructions from the CPU reset

vector will be executed.

– Core Reset: Resets the whole digital system except RTC, including CPU, peripherals, Wi-Fi,

Bluetooth® LE, and digital GPIOs.

– System Reset: Resets the whole digital system, including RTC.

– Chip Reset: Resets the whole chip.

• Support software reset and hardware reset:

– Software Reset: triggered via software by configuring the corresponding registers of CPU, see

Chapter 9 Low-power Management (RTC_CNTL).

Espressif Systems 141
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

6 Reset and Clock GoBack

– Hardware Reset: triggered directly by the hardware.

Note:

If CPU is reset, SENSITIVE registers will be reset, too.

6.1.4 Functional Description

CPU will be reset immediately when any of the resets above occurs. Users can get reset source codes by

reading register RTC_CNTL_RESET_CAUSE_PROCPU after the reset is released.

Table 6-1 lists possible reset sources and the types of reset they trigger.

Table 6­1. Reset Sources

Code Source Reset Type Comments

0x01 Chip reset1 Chip Reset —

0x0F
Brown-out system re-

set

Chip Reset

or System

Reset

Triggered by brown-out detector2

0x10 RWDT system reset
System Re-

set
See Chapter 12 Watchdog Timers (WDT)

0x12
Analog Super Watch-

dog reset

System Re-

set
See Chapter 12 Watchdog Timers (WDT)

0x13 Clock glitch reset
System Re-

set
See Chapter 1 Clock Glitch Detection [to be added later]

0x03 Software system reset Core Reset Triggered by configuring RTC_CNTL_SW_SYS_RST

0x05 Deep-sleep reset Core Reset See Chapter 9 Low-power Management (RTC_CNTL)

0x07 MWDT0 core reset Core Reset See Chapter 12 Watchdog Timers (WDT)

0x09 RWDT core reset Core Reset See Chapter 12 Watchdog Timers (WDT)

0x14 eFuse reset Core Reset Triggered by eFuse CRC error

0x18 JTAG reset CPU Reset Triggered by JTAG

0x0B MWDT0 CPU reset CPU Reset See Chapter 12 Watchdog Timers (WDT)

0x0C Software CPU reset CPU Reset Triggered by configuring RTC_CNTL_SW_PROCPU_RST

0x0D RWDT CPU reset CPU Reset See Chapter 12 Watchdog Timers (WDT)

1 Chip Reset can be triggered by the following two sources:

• Triggered by chip power-on.

• Triggered by brown-out detector.
2 Once brown-out status is detected, the detector will trigger System Reset or Chip Reset, depending on the

configuration of RTC_CNTL_BROWN_OUT_RST_SEL. See Chapter 9 Low-power Management (RTC_CNTL).

6.2 Clock

6.2.1 Overview

ESP8684 clocks are mainly sourced from external oscillator (OSC), RC, and PLL circuit, and then processed by

the dividers or selectors, which allows most functional modules to select their working clock according to their

Espressif Systems 142
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://github.com/espressif/esp-idf/blob/master/components/soc/esp32c2/include/soc/sensitive_reg.h
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

6 Reset and Clock GoBack

power consumption and performance requirements. Figure 6-2 shows the system clock structure.

6.2.2 Architectural Overview

Figure 6­2. System Clock

6.2.3 Features

ESP8684 clocks can be classified in two types depending on their frequencies:

• High speed clocks for devices working at a higher frequency, such as CPU and digital peripherals

– PLL_CLK (480 MHz): internal PLL clock

– XTAL_CLK (40 MHz): external crystal clock

• Slow speed clocks for low-power devices, such as RTC module and low-power peripherals

– OSC_SLOW_CLK (usually 32 kHz): external slow clock from GPIO0

– RC_FAST_CLK (17.5 MHz by default): internal fast RC oscillator with adjustable frequency

– FOSC_DIV_CLK: internal fast RC oscillator derived from RC_FAST_CLK divided by 256

– RC_SLOW_CLK (136 kHz by default): internal slow RC oscillator with adjustable frequency

Espressif Systems 143
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

6 Reset and Clock GoBack

6.2.4 Functional Description

6.2.4.1 CPU Clock

As Figure 6-2 shows, CPU_CLK is the master clock for CPU and it can be as high as 120 MHz when CPU works

in high performance mode. Alternatively, CPU can run at lower frequencies, such as at 2 MHz, to lower power

consumption. Users can set PLL_CLK, RC_FAST_CLK or XTAL_CLK as CPU_CLK clock source by configuring

SYSTEM_SOC_CLK_SEL, see Table 6-2 and Table 6-3. By default, the CPU clock is sourced from XTAL_CLK

with a divider of 2, i.e. the CPU clock is 20 MHz.

Table 6­2. CPU Clock Source

SYSTEM_SOC_CLK_SEL CPU Clock Source

0 XTAL_CLK

1 PLL_CLK

2 RC_FAST_CLK

Table 6­3. CPU Clock Frequency

CPU Clock Source SEL_0* SEL_1* CPU Clock Frequency

XTAL_CLK 0 -
CPU_CLK = XTAL_CLK/(SYSTEM_PRE_DIV_CNT + 1)

SYSTEM_PRE_DIV_CNT ranges from 0 ~ 1023. Default is

1

PLL_CLK 1 0
CPU_CLK = PLL_CLK/6

CPU_CLK frequency is 80 MHz

PLL_CLK 1 1
CPU_CLK = PLL_CLK/4

CPU_CLK frequency is 120 MHz

RC_FAST_CLK 2 -
CPU_CLK = RC_FAST_CLK/(SYSTEM_PRE_DIV_CNT +

1)

SYSTEM_PRE_DIV_CNT ranges from 0 ~ 1023. Default is

1

* The value of SYSTEM_SOC_CLK_SEL
* The value of SYSTEM_CPUPERIOD_SEL

6.2.4.2 Peripheral Clock

Peripheral clocks are classified into two categories:

• Bus clock: APB_CLK

• Functional clocks: CRYPTO_CLK, PLL_F80M_CLK, PLL_F60M_CLK, PLL_F40M_CLK, MSPI_CLK,

XTAL_CLK, and RC_FAST_CLK.

Table 6-4 shows which clock can be used by each peripheral.

Espressif Systems 144
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

6
R
esetand

C
lock

GoBack

Table 6­4. Peripheral Clocks

Peripheral XTAL_CLK RC_FAST_CLK PLL_F40M_CLK PLL_F60M_CLK PLL_F80M_CLK (RTC) RTC_FAST_CLK CRYPTO_CLK MSPI_CLK

Timer Group Y Y

UART Y Y Y

I2C Y Y

SPI Y Y

LEDC Y Y Y

SAR ADC Y Y

Temperature

sensor

Y Y

System Timer Y

Crypto Y

MSPI Y

eFuse Y

E
spressifS

ystem
s

145
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

6 Reset and Clock GoBack

APB_CLK

The frequency of APB_CLK is determined by the clock source of CPU_CLK as shown in Table 6-5.

Table 6­5. APB_CLK Clock Frequency

CPU_CLK Source APB_CLK Frequency

PLL_CLK 40 MHz

XTAL_CLK CPU_CLK

RC_FAST_CLK CPU_CLK

CRYPTO_CLK

The frequency of CRYPTO_CLK is determined by the CPU_CLK source, as shown in Table 6-6.

Table 6­6. CRYPTO_CLK Frequency

CPU_CLK Source CRYPTO_CLK Frequency

PLL_CLK 80 MHz

XTAL_CLK CPU_CLK

RC_FAST_CLK CPU_CLK

MSPI_CLK

The frequency of MSPI_CLK is determined by the CPU_CLK source, as shown in Table 6-7.

Table 6­7. MSPI_CLK Frequency

CPU_CLK Source MSPI_CLK Frequency

PLL_CLK CPU_CLK/2

XTAL_CLK CPU_CLK

RC_FAST_CLK CPU_CLK

PLL_F80M_CLK, PLL_F60M_CLK, PLL_F40M_CLK

PLL_F80M_CLK, PLL_F60M_CLK, and PLL_F40M_CLK are divided from PLL_CLK according to current PLL

frequency.

6.2.4.3 Wireless Clock

The wireless clock (LOW_POWER_CLK) in ESP8684 is used for Wi-Fi and Bluetooth LE in low-power mode. The

clock source of LOW_POWER_CLK can be:

• OSC_SLOW_CLK

• XTAL_CLK

• RC_FAST_CLK

• RTC_SLOW_CLK (the low clock selected by RTC)

Espressif Systems 146
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

6 Reset and Clock GoBack

Note: Wi-Fi and Bluetooth LE can only work when CPU_CLK uses PLL_CLK as its clock source. Suspending

PLL_CLK requires that Wi-Fi and Bluetooth LE have entered low-power mode first.

6.2.4.4 RTC Clock

RTC module can operate when most other clocks are stopped. RTC clocks include RTC_SLOW_CLK and

RTC_FAST_CLK.

The clock sources for RTC_SLOW_CLK and RTC_FAST_CLK are low-frequency clocks:

• RTC_SLOW_CLK, used to clock RTC timer, RTC watch dog, and low-power controller, can be derived

from:

– OSC_SLOW_CLK

– RC_SLOW_CLK

– or FOSC_DIV_CLK

• RTC_FAST_CLK, used to clock RTC peripherals and on-chip sensor module, can be derived from

– XTAL_CLK divided by 2

– or RC_FAST_CLK divided by N

Espressif Systems 147
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

7 Chip Boot Control GoBack

7 Chip Boot Control

7.1 Overview

Strapping pins are the specific chip pins used to control the following functions during chip power-on or

hardware reset of ESP8684:

• control chip boot mode

• enable or disable ROM code printing to UART

ESP8684 has two strapping pins:

• GPIO8

• GPIO9

During power-on reset, RTC watchdog reset, and brownout reset, (see Chapter 6 Reset and Clock), hardware

captures samples and stores the voltage level of strapping pins as strapping bit of “0” or “1” in latches, and holds

these bits until the chip is powered down. Software can read the latch status (strapping value) from

GPIO_STRAPPING.

7.2 Features

• Control of chip function on boot with strapping pins:

– GPIO8

– GPIO9

• Able to control chip boot mode:

– SPI Boot mode

– Download Boot mode

• Able to control ROM code printing to UART

• Allow the reading of strapping pin values from GPIO_STRAPPING

7.3 Functional Description

This section provides description of the chip functions and the pattern of the strapping pins values to invoke each

function.

Notice:

Only documented patterns should be used. If some pattern is not documented, it may trigger unexpected

behavior.

7.3.1 Default Configuration

By default, GPIO9 is connected to the chip’s internal pull-up resistor. If GPIO9 is not connected or connected to

an external high-impedance circuit, the internal weak pull-up determines the default input level of this strapping

Espressif Systems 148
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

7 Chip Boot Control GoBack

pin (see Table 7-1).

Table 7­1. Default Configuration of Strapping Pins

Strapping Pin Default Configuration

GPIO8 N/A

GPIO9 Pull-up

To change the strapping bit values, users can apply external pull-down/pull-up resistors, or use host MCU GPIOs

to control the voltage level of these pins when powering on ESP8684. After the reset is released, the strapping

pins work as normal-function pins.

7.3.2 Boot Mode Control

The values of GPIO8 and GPIO9 at reset determine the boot mode after the reset is released.

Table 7­2. Boot Mode Control

Boot Mode GPIO8 GPIO9

SPI Boot x 1

Download Boot 1 0

Table 7-2 shows the strapping pin values of GPIO8 and GPIO9, and the associated boot modes. “x” means that

this value is ignored.

In SPI Boot mode, the ROM bootloader loads and executes the program from SPI flash. SPI Boot mode can be

further classified as follows:

• Normal Flash Boot: supports Secure Boot. The ROM bootloader loads the program from flash into RAM

and executes it. In most practical scenarios, this program is the 2nd stage bootloader, which in turn boots

the final application.

• Direct Boot: does not support Secure Boot and programs run directly from flash. To enable this mode,

make sure that the first two words of the bin file downloaded to flash are 0xaedb041d. For more detailed

process, see Figure 7-1.

In Download Boot mode, users can download code into flash using UART0 interface. It is also possible to load a

program into SRAM and execute it from SRAM.

Figure 7-1 shows the detailed boot flow of the chip.

Espressif Systems 149
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

7 Chip Boot Control GoBack

Reset

Check Strapping
Value*

Check binary
header

Initialization

x1 10

Header = 0xaedb041d

Initialization Initialization

Yes

Copy the
program from
fash to RAM

Wait for
downloading
from UART

Download Boot Mode

Normal Flash Boot Mode

No

 Jump to entry
Point in RAM

Jump to entry
point in fash

Direct Boot Mode

SPI Boot Mode

Enable cache
and set up

MMU

Figure 7­1. Chip Boot Flow

The following registers control boot mode behaviors:

• RTC_CNTL_FORCE_DOWNLOAD_BOOT

Software can force switch the chip from SPI Boot mode to Download Boot mode by setting register

RTC_CNTL_FORCE_DOWNLOAD_BOOT and triggering a CPU reset.

• EFUSE_DIS_DOWNLOAD_MODE

If this eFuse is 1, Download Boot mode is disabled.

• EFUSE_ENABLE_SECURITY_DOWNLOAD

If this eFuse is 1, Download Boot mode only allows reading, writing, and erasing plaintext flash and does

not support any SRAM or register operations. Ignore this eFuse if Download Boot mode is disabled.

Espressif Systems 150
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

7 Chip Boot Control GoBack

7.3.3 ROM Code Printing Control

GPIO8 controls ROM code printing during the early SPI boot process. This GPIO is used together with

EFUSE_UART

_PRINT_CONTROL.

Table 7­3. ROM Code Printing Control

eFuse1 GPIO8 ROM Code Printing Behavior

0 x
ROM code always prints to UART during boot.

The value of GPIO8 is ignored.

1
0 Print is enabled during boot.

1 Print is disabled during boot.

2
0 Print is disabled during boot.

1 Print is enabled during boot.

3 x
Print is always disabled during boot. The value of GPIO8 is

ignored.

1 eFuse: EFUSE_UART_PRINT_CONTROL

Espressif Systems 151
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

8 Interrupt Matrix (INTMTRX) GoBack

8 Interrupt Matrix (INTMTRX)

8.1 Overview

The interrupt matrix embedded in ESP8684 independently routes peripheral interrupt sources to the ESP-RISC-V

CPU’s peripheral interrupts, to timely inform CPU to process the coming interrupts.

The ESP8684 has 43 peripheral interrupt sources. To map them to 31 CPU interrupts, this interrupt matrix is

needed.

Note:

This chapter focuses on how to map peripheral interrupt sources to CPU interrupts. For more details about interrupt

configuration, vector, and ISA suggested operations, please refer to Chapter 1 ESP-RISC-V CPU.

8.2 Features

Interrupt matrix has the following features:

• 43 peripheral interrupt sources as input

• 31 CPU peripheral interrupts as output

• Able to query current status of peripheral interrupt sources

• Configurable priority, type, threshold, and enable signal of CPU interrupts

Figure 8-1 shows the structure of the interrupt matrix.

Figure 8­1. Interrupt Matrix Structure

8.3 Functional Description

Espressif Systems 152
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

8 Interrupt Matrix (INTMTRX) GoBack

8.3.1 Peripheral Interrupt Sources

The ESP8684 has 43 peripheral interrupt sources in total. Table 8-1 lists all these sources and their

configuration/status registers.

• Column “Index”: Peripheral interrupt source index, can be 0 ~ 42.

• Column “Chapter”: In which chapter the interrupt source is described in details.

• Column “Source”: Name of the peripheral interrupt source.

• Column “Configuration Register”: Registers used to configure routing of the peripheral interrupt sources to

CPU peripheral interrupts

• Column “Status Register”: Registers used for indicating the interrupt status of peripheral interrupt sources.

– Column “Status Register - Bit”: Bit position in status register, indicating the interrupt status.

– Column “Status Register - Name”: Name of status registers.

Espressif Systems 153
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

8
InterruptM

atrix
(IN

TM
TR

X)
GoBack

Table 8­1. CPU Peripheral Interrupt Configuration/Status Registers and Peripheral Interrupt Sources

Status Register
Index Chapter Source Configuration Register

Bit Name

0 N/A reserved reserved 0

INTERRUPT_CORE0_INTR_STATUS_0_REG

1 N/A reserved reserved 1

2 N/A reserved reserved 2

3 N/A reserved reserved 3

4 N/A reserved reserved 4

5 N/A reserved reserved 5

6 N/A reserved reserved 6

7 N/A reserved reserved 7

8 N/A reserved reserved 8

9 N/A reserved reserved 9

10 N/A reserved reserved 10

11 N/A reserved reserved 11

12 N/A reserved reserved 12

13
IO MUX and GPIO Matrix (GPIO,

IO MUX)
GPIO_PROCPU_INTR INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_MAP_REG 13

14
IO MUX and GPIO Matrix (GPIO,

IO MUX)
GPIO_PROCPU_NMI_INTR INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_NMI_MAP_REG 14

15 N/A reserved reserved 15

16 SPI Controller (SPI) GPSPI2_INTR_2 INTERRUPT_CORE0_SPI_INTR_2_MAP_REG 16

17 UART Controller (UART) UART_INTR INTERRUPT_CORE0_UART_INTR_MAP_REG 17

18 UART Controller (UART) UART1_INTR INTERRUPT_CORE0_UART1_INTR_MAP_REG 18

19 LED PWM Controller (LEDC) LEDC_INTR INTERRUPT_CORE0_LEDC_INT_MAP_REG 19

20 eFuse Controller (eFuse) EFUSE_INTR INTERRUPT_CORE0_EFUSE_INT_MAP_REG 20

21
Low-power Management

(RTC_CNTL)
RTC_CNTL_INTR INTERRUPT_CORE0_RTC_CORE_INTR_MAP_REG 21

22 I2C Master Controller (I2C) I2C_EXT0_INTR INTERRUPT_CORE0_I2C_EXT0_INTR_MAP_REG 22

23 Timer Group (TIMG) TG_T0_INTR INTERRUPT_CORE0_TG_T0_INT_MAP_REG 23

24 Timer Group (TIMG) TG_WDT_INTR INTERRUPT_CORE0_TG_WDT_INT_MAP_REG 24

25 N/A reserved reserved 25

26 System Timer (SYSTIMER) SYSTIMER_TARGET0_INTR INTERRUPT_CORE0_SYSTIMER_TARGET0_INT_MAP_REG 26

27 System Timer (SYSTIMER) SYSTIMER_TARGET1_INTR INTERRUPT_CORE0_SYSTIMER_TARGET1_INT_MAP_REG 27

28 System Timer (SYSTIMER) SYSTIMER_TARGET2_INTR INTERRUPT_CORE0_SYSTIMER_TARGET2_INT_MAP_REG 28

29 N/A reserved reserved 29

30 N/A reserved reserved 30

E
spressifS

ystem
s

154
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

8
InterruptM

atrix
(IN

TM
TR

X)
GoBack

Status Register
Index Chapter Source Configuration Register

Bit Name

31 N/A reserved reserved 31

32
On-Chip Sensor and Analog

Signal Processing
DIGTAL_ADC_INTR INTERRUPT_CORE0_APB_ADC_INT_MAP_REG 0

INTERRUPT_CORE0_INTR_STATUS_1_REG

33 GDMA Controller (GDMA) GDMA_CH0_INTR INTERRUPT_CORE0_DMA_CH0_INT_MAP_REG 1

34 SHA Accelerator (SHA) SHA_INTR INTERRUPT_CORE0_SHA_INTR_MAP_REG 2

35 ECC Hardware Accelerator (ECC) ECC_INTR INTERRUPT_CORE0_ECC_INTR_MAP_REG 3

36 System Registers (SYSTEM) SW_INTR_0 INTERRUPT_CORE0_CPU_INTR_FROM_CPU_0_MAP_REG 4

37 System Registers (SYSTEM) SW_INTR_1 INTERRUPT_CORE0_CPU_INTR_FROM_CPU_1_MAP_REG 5

38 System Registers (SYSTEM) SW_INTR_2 INTERRUPT_CORE0_CPU_INTR_FROM_CPU_2_MAP_REG 6

39 System Registers (SYSTEM) SW_INTR_3 INTERRUPT_CORE0_CPU_INTR_FROM_CPU_3_MAP_REG 7

40
Debug Assistant

(ASSIST_DEBUG)
ASSIST_DEBUG_INTR INTERRUPT_CORE0_ASSIST_DEBUG_INTR_MAP_REG 8

41 N/A PERI_VIO_SIZE_INTR INTERRUPT_CORE0_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR_MAP_REG 9

42 N/A reserved reserved 10

E
spressifS

ystem
s

155
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

8 Interrupt Matrix (INTMTRX) GoBack

8.3.2 CPU Interrupts

The ESP8684 implements its interrupt mechanism using an interrupt controller instead of RISC-V Privileged ISA

specification. The ESP-RISC-V CPU has 31 interrupts, with unique IDs (1 ~ 31). Each CPU interrupt has the

following properties.

• Priority levels from 1 (lowest) to 15 (highest).

• Configurable as high-level triggered or rising-edge triggered.

• Programmable threshold for masking interrupts with lower priority.

Note:

For detailed information about how to configure CPU interrupts, see Chapter 1 ESP-RISC-V CPU.

8.3.3 Allocate Peripheral Interrupt Source to CPU Interrupt

In this section, the following terms are used to describe the operation of the interrupt matrix.

• Source_X: stands for a peripheral interrupt source, wherein X means the index of this interrupt source in

Table 8-1.

• INTERRUPT_CORE0_SOURCE_X_MAP_REG: stands for a configuration register, mapping Source_X to

CPU interrupt.

• Num_P: the ID of CPU interrupts, can be 1 ~ 31.

• Interrupt_P: stands for the CPU interrupt with ID = Num_P.

8.3.3.1 Allocate one peripheral interrupt source (Source_X) to CPU

Setting the corresponding configuration register INTERRUPT_CORE0_SOURCE_X_MAP_REG of Source_X to

Num_P allocates this interrupt source to Interrupt_P.

8.3.3.2 Allocate multiple peripheral interrupt sources (Source_Xn) to CPU

Setting the corresponding configuration register INTERRUPT_CORE0_SOURCE_Xn_MAP_REG of each interrupt

source to the same Num_P allocates multiple sources to the same Interrupt_P. Any of these sources can trigger

CPU Interrupt_P. When an interrupt signal is generated, interrupt service routine (ISR) should check the interrupt

status registers to figure out which peripheral generated the interrupt. For more information, see Chapter 1

ESP-RISC-V CPU.

8.3.3.3 Disable CPU peripheral interrupt source (Source_X)

Clearing the configuration register INTERRUPT_CORE0_SOURCE_X_MAP_REG disables the corresponding

interrupt source.

8.3.4 Query Current Interrupt Status of Peripheral Interrupt Source

Users can query current interrupt status of a peripheral interrupt source by reading the bit value in

INTERRUPT_CORE0_INTR_STATUS_n_REG (read only). For the mapping between

INTERRUPT_CORE0_INTR_STATUS_n_REG and peripheral interrupt sources, please refer to Table 8-1.

Espressif Systems 156
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

8
InterruptM

atrix
(IN

TM
TR

X)
GoBack

8.4 Register Summary

The addresses in this section are relative to the interrupt matrix base address provided in Table 3-3 in Chapter 3 System and Memory.

Name Description Address Access

Interrupt source mapping register

INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_MAP_REG GPIO_INTERRUPT_PRO mapping register 0x0034 R/W

INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_NMI_MAP_REG GPIO_INTERRUPT_PRO_NMI mapping register 0x0038 R/W

INTERRUPT_CORE0_SPI_INTR_2_MAP_REG SPI_INTR_2 mapping register 0x0040 R/W

INTERRUPT_CORE0_UART_INTR_MAP_REG UART_INTR mapping register 0x0044 R/W

INTERRUPT_CORE0_UART1_INTR_MAP_REG UART1_INTR mapping register 0x0048 R/W

INTERRUPT_CORE0_LEDC_INT_MAP_REG LEDC_INT mapping register 0x004C R/W

INTERRUPT_CORE0_EFUSE_INT_MAP_REG EFUSE_INT mapping register 0x0050 R/W

INTERRUPT_CORE0_RTC_CORE_INTR_MAP_REG RTC_CORE_INTR mapping register 0x0054 R/W

INTERRUPT_CORE0_I2C_EXT0_INTR_MAP_REG I2C_EXT0_INTR mapping register 0x0058 R/W

INTERRUPT_CORE0_TG_T0_INT_MAP_REG TG_T0_INT mapping register 0x005C R/W

INTERRUPT_CORE0_TG_WDT_INT_MAP_REG TG_WDT_INT mapping register 0x0060 R/W

INTERRUPT_CORE0_SYSTIMER_TARGET0_INT_MAP_REG SYSTIMER_TARGET0_INT mapping register 0x0068 R/W

INTERRUPT_CORE0_SYSTIMER_TARGET1_INT_MAP_REG SYSTIMER_TARGET1_INT mapping register 0x006C R/W

INTERRUPT_CORE0_SYSTIMER_TARGET2_INT_MAP_REG SYSTIMER_TARGET2_INT mapping register 0x0070 R/W

INTERRUPT_CORE0_APB_ADC_INT_MAP_REG APB_ADC_INT mapping register 0x0080 R/W

INTERRUPT_CORE0_DMA_CH0_INT_MAP_REG DMA_CH0_INT mapping register 0x0084 R/W

INTERRUPT_CORE0_SHA_INT_MAP_REG SHA_INT mapping register 0x0088 R/W

INTERRUPT_CORE0_ECC_INT_MAP_REG ECC_INT mapping register 0x008C R/W

INTERRUPT_CORE0_CPU_INTR_FROM_CPU_0_MAP_REG CPU_INTR_FROM_CPU_0 mapping register 0x0090 R/W

INTERRUPT_CORE0_CPU_INTR_FROM_CPU_1_MAP_REG CPU_INTR_FROM_CPU_1 mapping register 0x0094 R/W

INTERRUPT_CORE0_CPU_INTR_FROM_CPU_2_MAP_REG CPU_INTR_FROM_CPU_2 mapping register 0x0098 R/W

INTERRUPT_CORE0_CPU_INTR_FROM_CPU_3_MAP_REG CPU_INTR_FROM_CPU_3 mapping register 0x009C R/W

INTERRUPT_CORE0_ASSIST_DEBUG_INTR_MAP_REG ASSIST_DEBUG_INTR mapping register 0x00A0 R/W

INTERRUPT_CORE0_SIZE_INTR_MAP_REG PIF_PMS_MONITOR_VIOLATE_SIZE_INTR mapping register 0x00A4 R/W

Interrupt source status register

E
spressifS

ystem
s

157
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

8
InterruptM

atrix
(IN

TM
TR

X)
GoBack

Name Description Address Access

INTERRUPT_CORE0_INTR_STATUS_0_REG Interrupt source status register 0 0x00AC RO

INTERRUPT_CORE0_INTR_STATUS_1_REG Interrupt source status register 1 0x00B0 RO

Clock register

INTERRUPT_CORE0_CLOCK_GATE_REG Clock register 0x00B4 R/W

CPU interrupt register

INTERRUPT_CORE0_CPU_INT_ENABLE_REG Enable register for CPU interrupts 0x00B8 R/W

INTERRUPT_CORE0_CPU_INT_TYPE_REG Type configuration register for CPU interrupts 0x00BC R/W

INTERRUPT_CORE0_CPU_INT_CLEAR_REG CPU interrupt clear register 0x00C0 R/W

INTERRUPT_CORE0_CPU_INT_EIP_STATUS_REG Pending status register for CPU interrupts 0x00C4 RO

INTERRUPT_CORE0_CPU_INT_PRI_1_REG Priority configuration register for CPU interrupt 1 0x00CC R/W

INTERRUPT_CORE0_CPU_INT_PRI_2_REG Priority configuration register for CPU interrupt 2 0x00D0 R/W

INTERRUPT_CORE0_CPU_INT_PRI_3_REG Priority configuration register for CPU interrupt 3 0x00D4 R/W

INTERRUPT_CORE0_CPU_INT_PRI_4_REG Priority configuration register for CPU interrupt 4 0x00D8 R/W

INTERRUPT_CORE0_CPU_INT_PRI_5_REG Priority configuration register for CPU interrupt 5 0x00DC R/W

INTERRUPT_CORE0_CPU_INT_PRI_6_REG Priority configuration register for CPU interrupt 6 0x00E0 R/W

INTERRUPT_CORE0_CPU_INT_PRI_7_REG Priority configuration register for CPU interrupt 7 0x00E4 R/W

INTERRUPT_CORE0_CPU_INT_PRI_8_REG Priority configuration register for CPU interrupt 8 0x00E8 R/W

INTERRUPT_CORE0_CPU_INT_PRI_9_REG Priority configuration register for CPU interrupt 9 0x00EC R/W

INTERRUPT_CORE0_CPU_INT_PRI_10_REG Priority configuration register for CPU interrupt 10 0x00F0 R/W

INTERRUPT_CORE0_CPU_INT_PRI_11_REG Priority configuration register for CPU interrupt 11 0x00F4 R/W

INTERRUPT_CORE0_CPU_INT_PRI_12_REG Priority configuration register for CPU interrupt 12 0x00F8 R/W

INTERRUPT_CORE0_CPU_INT_PRI_13_REG Priority configuration register for CPU interrupt 13 0x00FC R/W

INTERRUPT_CORE0_CPU_INT_PRI_14_REG Priority configuration register for CPU interrupt 14 0x0100 R/W

INTERRUPT_CORE0_CPU_INT_PRI_15_REG Priority configuration register for CPU interrupt 15 0x0104 R/W

INTERRUPT_CORE0_CPU_INT_PRI_16_REG Priority configuration register for CPU interrupt 16 0x0108 R/W

INTERRUPT_CORE0_CPU_INT_PRI_17_REG Priority configuration register for CPU interrupt 17 0x010C R/W

INTERRUPT_CORE0_CPU_INT_PRI_18_REG Priority configuration register for CPU interrupt 18 0x0110 R/W

INTERRUPT_CORE0_CPU_INT_PRI_19_REG Priority configuration register for CPU interrupt 19 0x0114 R/W

INTERRUPT_CORE0_CPU_INT_PRI_20_REG Priority configuration register for CPU interrupt 20 0x0118 R/W

E
spressifS

ystem
s

158
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

8
InterruptM

atrix
(IN

TM
TR

X)
GoBack

Name Description Address Access

INTERRUPT_CORE0_CPU_INT_PRI_21_REG Priority configuration register for CPU interrupt 21 0x011C R/W

INTERRUPT_CORE0_CPU_INT_PRI_22_REG Priority configuration register for CPU interrupt 22 0x0120 R/W

INTERRUPT_CORE0_CPU_INT_PRI_23_REG Priority configuration register for CPU interrupt 23 0x0124 R/W

INTERRUPT_CORE0_CPU_INT_PRI_24_REG Priority configuration register for CPU interrupt 24 0x0128 R/W

INTERRUPT_CORE0_CPU_INT_PRI_25_REG Priority configuration register for CPU interrupt 25 0x012C R/W

INTERRUPT_CORE0_CPU_INT_PRI_26_REG Priority configuration register for CPU interrupt 26 0x0130 R/W

INTERRUPT_CORE0_CPU_INT_PRI_27_REG Priority configuration register for CPU interrupt 27 0x0134 R/W

INTERRUPT_CORE0_CPU_INT_PRI_28_REG Priority configuration register for CPU interrupt 28 0x0138 R/W

INTERRUPT_CORE0_CPU_INT_PRI_29_REG Priority configuration register for CPU interrupt 29 0x013C R/W

INTERRUPT_CORE0_CPU_INT_PRI_30_REG Priority configuration register for CPU interrupt 30 0x0140 R/W

INTERRUPT_CORE0_CPU_INT_PRI_31_REG Priority configuration register for CPU interrupt 31 0x0144 R/W

INTERRUPT_CORE0_CPU_INT_THRESH_REG Threshold configuration register for CPU interrupts 0x0148 R/W

Version register

INTERRUPT_CORE0_INTERRUPT_DATE_REG Version control register 0x07FC R/W

E
spressifS

ystem
s

159
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

8 Interrupt Matrix (INTMTRX) GoBack

8.5 Registers

The addresses in this section are relative to the interrupt matrix base address provided in Table 3-3 in Chapter 3

System and Memory.

Register 8.1. INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_MAP_REG (0x0034)

Register 8.2. INTERRUPT_CORE0_GPIO_INTERRUPT_PRO_NMI_MAP_REG (0x0038)

Register 8.3. INTERRUPT_CORE0_SPI_INTR_2_MAP_REG (0x0040)

Register 8.4. INTERRUPT_CORE0_UART_INTR_MAP_REG (0x0044)

Register 8.5. INTERRUPT_CORE0_UART1_INTR_MAP_REG (0x0048)

Register 8.6. INTERRUPT_CORE0_LEDC_INT_MAP_REG (0x004C)

Register 8.7. INTERRUPT_CORE0_EFUSE_INT_MAP_REG (0x0050)

Register 8.8. INTERRUPT_CORE0_RTC_CORE_INTR_MAP_REG (0x0054)

Register 8.9. INTERRUPT_CORE0_I2C_EXT0_INTR_MAP_REG (0x058)

Register 8.10. INTERRUPT_CORE0_TG_T0_INT_MAP_REG (0x005C)

Register 8.11. INTERRUPT_CORE0_TG_WDT_INT_MAP_REG (0x0060)

Register 8.12. INTERRUPT_CORE0_SYSTIMER_TARGET0_INT_MAP_REG (0x0068)

Register 8.13. INTERRUPT_CORE0_SYSTIMER_TARGET1_INT_MAP_REG (0x006C)

Register 8.14. INTERRUPT_CORE0_SYSTIMER_TARGET2_INT_MAP_REG (0x0070)

Register 8.15. INTERRUPT_CORE0_APB_ADC_INT_MAP_REG (0x0080)

Register 8.16. INTERRUPT_CORE0_DMA_CH0_INT_MAP_REG (0x0084)

Register 8.17. INTERRUPT_CORE0_SHA_INT_MAP_REG (0x0088)

Register 8.18. INTERRUPT_CORE0_ECC_INT_MAP_REG (0x008C)

Register 8.19. INTERRUPT_CORE0_CPU_INTR_FROM_CPU_0_MAP_REG (0x0090)

Register 8.20. INTERRUPT_CORE0_CPU_INTR_FROM_CPU_1_MAP_REG (0x0094)

Register 8.21. INTERRUPT_CORE0_CPU_INTR_FROM_CPU_2_MAP_REG (0x0098)

Register 8.22. INTERRUPT_CORE0_CPU_INTR_FROM_CPU_3_MAP_REG (0x009C)

Register 8.23. INTERRUPT_CORE0_ASSIST_DEBUG_INTR_MAP_REG (0x00A0)

Register 8.24. INTERRUPT_CORE0_PIF_PMS_MONITOR_VIOLATE_SIZE_INTR_MAP_REG (0x00A4)

(re
se
rve
d)

0 0

31 5

IN
TE
RR
UP
T_
CO
RE
0_
SO
UR
CE
_X
_M
AP

0

4 0

Reset

INTERRUPT_CORE0_SOURCE_X_MAP Map the interrupt source (SOURCE_X) into one CPU inter-

rupt. For the information of SOURCE_X, see Table 8-1. (R/W)

Espressif Systems 160
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

8 Interrupt Matrix (INTMTRX) GoBack

Register 8.25. INTERRUPT_CORE0_INTR_STATUS_0_REG (0x00AC)

IN
TE
RR
UP
T_
CO
RE
0_
IN
TR
_S
TA
TU
S_
0

0x000000

31 0

Reset

INTERRUPT_CORE0_INTR_STATUS_0 This register stores the status of the first 32 interrupt

sources: 0 ~ 31. If the bit is 1 here, it means the corresponding source triggered an interrupt.

(RO)

Register 8.26. INTERRUPT_CORE0_INTR_STATUS_1_REG (0x00B0)

IN
TE
RR
UP
T_
CO
RE
0_
IN
TR
_S
TA
TU
S_
1

0x000000

31 0

Reset

INTERRUPT_CORE0_INTR_STATUS_1 This register stores the status of interrupt sources: 32 ~ 42.

If the bit is 1 here, it means the corresponding source triggered an interrupt. (RO)

Register 8.27. INTERRUPT_CORE0_CLOCK_GATE_REG (0x00B4)

(re
se
rve
d)

0 0

31 1

IN
TE
RR
UP
T_
CO
RE
0_
CL
K_
EN

1

0

Reset

INTERRUPT_CORE0_CLK_EN Set 1 to force interrupt register clock-gate on. (R/W)

Espressif Systems 161
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

8 Interrupt Matrix (INTMTRX) GoBack

Register 8.28. INTERRUPT_CORE0_CPU_INT_ENABLE_REG (0x00B8)

IN
TE
RR
UP
T_
CO
RE
0_
CP
U_
IN
T_
EN
AB
LE

0

31 0

Reset

INTERRUPT_CORE0_CPU_INT_ENABLE Writing 1 to the bit here enables its corresponding CPU

interrupt. For more information about how to use this register, see Chapter 1 ESP-RISC-V CPU.

(R/W)

Register 8.29. INTERRUPT_CORE0_CPU_INT_TYPE_REG (0x00BC)

IN
TE
RR
UP
T_
CO
RE
0_
CP
U_
IN
T_
TY
PE

0

31 0

Reset

INTERRUPT_CORE0_CPU_INT_TYPE Configure CPU interrupt type. 0: level-triggered; 1: edge-

triggered. For more information about how to use this register, see Chapter 1 ESP-RISC-V CPU.

(R/W)

Espressif Systems 162
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

8 Interrupt Matrix (INTMTRX) GoBack

Register 8.30. INTERRUPT_CORE0_CPU_INT_CLEAR_REG (0x00C0)

IN
TE
RR
UP
T_
CO
RE
0_
CP
U_
IN
T_
CL
EA
R

0

31 0

Reset

INTERRUPT_CORE0_CPU_INT_CLEAR Writing 1 to the bit here clears its corresponding CPU in-

terrupt. For more information about how to use this register, see Chapter 1 ESP-RISC-V CPU.

(R/W)

Register 8.31. INTERRUPT_CORE0_CPU_INT_EIP_STATUS_REG (0x00C4)

IN
TE
RR
UP
T_
CO
RE
0_
CP
U_
IN
T_
EIP
_S
TA
TU
S

0

31 0

Reset

INTERRUPT_CORE0_CPU_INT_EIP_STATUS Store the pending status of CPU interrupts. For more

information about how to use this register, see Chapter 1 ESP-RISC-V CPU. (RO)

Espressif Systems 163
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

8 Interrupt Matrix (INTMTRX) GoBack

Register 8.32. INTERRUPT_CORE0_CPU_INT_PRI_n_REG (n: 1 ­ 31)(0x00C8 + 0x4*n)

(re
se
rve
d)

0 0

31 4

IN
TE
RR
UP
T_
CO
RE
0_
CP
U_
PR
I_n
_M
AP

0

3 0

Reset

INTERRUPT_CORE0_CPU_PRI_n_MAP Set the priority for CPU interrupt n. The priority here can

be 1 (lowest) ~ 15 (highest). For more information about how to use this register, see Chapter 1

ESP-RISC-V CPU. (R/W)

Register 8.33. INTERRUPT_CORE0_CPU_INT_THRESH_REG (0x0148)

(re
se
rve
d)

0 0

31 4

IN
TE
RR
UP
T_
CO
RE
0_
CP
U_
IN
T_
TH
RE
SH

0

3 0

Reset

INTERRUPT_CORE0_CPU_INT_THRESH Set threshold for interrupt assertion to CPU. Only when

the interrupt priority is equal to or higher than this threshold, CPU will respond to this interrupt. For

more information about how to use this register, see Chapter 1 ESP-RISC-V CPU. (R/W)

Register 8.34. INTERRUPT_CORE0_INTERRUPT_DATE_REG (0x07FC)

(re
se
rve
d)

0 0 0 0

31 28

IN
TE
RR
UP
T_
CO
RE
0_
IN
TE
RR
UP
T_
DA
TE

0x2108190

27 0

Reset

INTERRUPT_CORE0_INTERRUPT_DATE Version control register. (R/W)

Espressif Systems 164
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

9 Low­power Management (RTC_CNTL)

9.1 Introduction

ESP8684 has an advanced Power Management Unit (PMU), which can flexibly power up different power domains

of the chip, to achieve the best balance among chip performance, power consumption, and wakeup latency. To

simplify power management for typical scenarios, ESP8684 has predefined four power modes, which are preset

configurations that power up different combinations of power domains. On top of that, the chip also allows the

users to independently power up any particular power domain to meet more complex requirements.

9.2 Features

ESP8684’s low-power management supports the following features:

• 4 x predefined power modes to simplify power management for typical scenarios

• 8 x 32-bit retention registers

In this chapter, we first introduce the working process of ESP8684’s low-power management, then introduce the

predefined power modes of the chip.

9.3 Functional Description

ESP8684’s low-power management involves the following components:

• Power management unit: controls the power supply to three power domain categories:

– Real Time Controller (RTC)

– Digital

– Analog

For a complete list of 6 power domains grouped in these three power domain categories, see Section 9.5.1.

• Power isolation unit: isolates different power domains, so any powered down power domain does not

affect the powered up ones.

• Low-power clocks: provide clocks to power domains working in low-power modes.

• RTC timer: logs the status of the RTC main state machine in dedicated registers.

• 8 x 32-bit “always-on” retention registers: These registers are always powered up and are not affected by

any low-power modes, thus can be used for storing data that cannot be lost.

• 6 x “always-on” pins: These pins are always powered up and are not affected by any low-power modes,

which makes them suitable for working as wakeup sources when the chip is working in the low-power

modes (for details, please refer to Section 9.5.3), or can be used as regular GPIOs (for details, please refer

to Chapter 5 IO MUX and GPIO Matrix (GPIO, IO MUX)).

• Voltage regulators: regulate the power supply to different power domains.

The schematic diagram of ESP8684’s low-power management is shown in Figure 9-1.

Espressif Systems 165
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

xpd_rtc_reg
xpd_dig_reg

 xpd_ex_crystal

xpd_rc_oscilator

Internal signal

Internal signal

xpd_dg_wrap

Power Management
Unit

Digital System
Voltage

Regulator

Digital System

Analog System

CPU

Digital Core

Wireless Mac and Baseband

VDDA1 VDDA2

Red lines represent power distribution

Low Power
Voltage

Regulator

 VDD_SPI

RC_FAST_CLK

VDD3P3_RTC VDD3P3_CPU

XTAL_CLK RF Circuits

PLL_CLK

ROM

Peripherals Internal SRAMx

Bluetooth LE
Link Controller

Bluetooth LE
Baseband

Wi-Fi MAC Wi-Fi Baseband

RTC System

ESP8684

RRTC IO Digital
 IO

Figure 9­1. Low­power Management Schematics

Note:
• Power domains are enclosed with dashed lines. For more information about different power domains, please check

Section 9.5.1.

• Switches in the above diagram can be controlled by Register RTC_CNTL_DIG_PWC_REG.

• Signals in the above diagram are described below:

– xpd_rtc_reg:

* When RTC_CNTL_REGULATOR_FORCE_PU is set to 1, low power voltage regulator is always-on;

* Otherwise, the low power voltage regulator is off when chip enters sleep.

– xpd_dig_reg:

* When RTC_CNTL_DG_WRAP_PD_EN is enabled, the digital system voltage regulator is off when the

chip enters sleep;

* Otherwise, the digital system voltage regulator is always-on.

– xpd_ex_crystal:

* When RTC_CNTL_XTL_FORCE_PU is set to 1, the external main crystal clock is always-on;

* Otherwise, the external main crystal clock is off when chip enters sleep.

– xpd_rc_oscilator:

* when RTC_CNTL_FOSC_FORCE_PU is set to 1, the fast RC oscillator is always-on;

* Otherwise, the fast RC oscillator is off when chip enters sleep.

Espressif Systems 166
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

9.3.1 Power Management Unit (PMU)

ESP8684’s power management unit controls the power supply to different power domains. The main

components of the power management unit include:

• RTC main state machine: generates power gating, clock gating, and reset signals.

• Power controllers: power up and power down different power domains, according to the power gating

signals from the main state machine.

• Sleep / wakeup controllers: send sleep or wakeup requests to the RTC main state machine.

• Clock controller: selects and powers up/down clock sources.

• Protection Timer: controls the transition interval between main state machine states.

In ESP8684’s power management unit, the sleep / wakeup controllers send sleep or wakeup requests to the

RTC main state machine, which then generates power gating, clock gating, and reset signals. Then, the power

controller and clock controller power up and power down different power domains and clock sources, according

to the signals generated by the RTC main state machine, so that the chip enters or exits the low-power modes.

The main workflow is shown in Figure 9-2.

ESP32-C3

RTC Main State Machine

Wakeup ControllerSleep Controller

Power Controller

m
ai

n
st

at
e

m
ai

n
st

at
e

Protection
Timer

w
ai

t
d

on
e

m
ai

n
st

at
e

Clock
Controller

m
ai

n
st

at
e

Wakeup Source 1 Wakeup Source n…...

Power Controller…...

sl
ee

p
 a

cc
ep

t

sl
ee

p
 E

N

sl
ee

p
 r

ej
ec

t

Figure 9­2. Power Management Unit Workflow

Note:
1. Each power domain has its own power controller. For a complete list of all the available power controllers controlling

different power domains, please refer to Section 9.5.1.

2. For a complete list of all the available wakeup sources, please refer to Table 9-4.

Espressif Systems 167
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

9.3.2 Low­Power Clocks

In general, ESP8684 powers down its External Main Crystal Clock (XTAL_CLK) and PLL Clock (PLL_CLK) to

reduce power consumption when working in low-power modes. During this time, the chip’s low-power clocks

remain on to provide clocks to low power domains, such as the power management unit.

ESP8684

RC_SLOW_CLK

 OSC_SLOW_CLK

RC_FAST_DIV_CLK

PMU
(Except RTC Registers)

 RTC_SLOW_CLK

RTC Slow Clock

0

1

2

div n RC_FAST_CLK

 XTAL_DIV_CLK

RTC Registers
 RTC_FAST_CLK

0

1

RTC Fast Clock

Selection Signal

Selection Signal

Figure 9­3. RTC_SLOW_CLK and RTC_FAST_CLK

Table 9­1. Low­power Clocks

Clock Type Clock Source Selection Signal Power Domain

RTC_SLOW_CLK

OSC_SLOW_CLK

RTC_CNTL_ANA_CLK_RTC_SEL
Power Management System

(except RTC registers)
RC_FAST_DIV_CLK

RC_SLOW_CLK (default)

RTC_FAST_CLK

RC_FAST_CLK divided by n

(default) RTC_CNTL_FAST_CLK_RTC_SEL RTC Registers

XTAL_DIV_CLK

For more detailed description about clocks, please refer to 6 Reset and Clock.

9.3.3 Timers

ESP8684’s low-power management uses RTC timer. The readable 48-bit RTC timer is a real-time counter (using

RTC slow clock) that can be configured to log the time when one of the following events happens. For details,

see Table 9-2.

Table 9­2. The Triggering Conditions for the RTC Timer

Enabling Options Descriptions

RTC_CNTL_TIMER_XTL_OFF
RTCmain state machine powers down or XTAL_CLK powers

up.

RTC_CNTL_TIMER_SYS_STALL
CPU enters or exits the stall state. This is to ensure the

SYS_TIMER is continuous in time.

RTC_CNTL_TIMER_SYS_RST Resetting digital system completes.

Espressif Systems 168
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

RTC_CNTL_TIME_UPDATE
Register RTC_CNTL_TIME_UPDATE is configured by CPU

(i.e. users).

The RTC timer updates two groups of registers upon any new trigger. The first group logs the time of the current

trigger, and the other logs the previous trigger. Detailed information about these two register groups is shown

below:

• Register group 0: logs the status of RTC timer at the current trigger.

– RTC_CNTL_TIME_HIGH0_REG

– RTC_CNTL_TIME_LOW0_REG

• Register group 1: logs the status of RTC timer at the previous trigger.

– RTC_CNTL_TIME_HIGH1_REG

– RTC_CNTL_TIME_LOW1_REG

On a new trigger, information on previous trigger is moved from register group 0 to register group 1 (and the

original trigger logged in register group 1 is overwritten), and this new trigger is logged in register group 0.

Therefore, only the last two triggers can be logged at any time.

It should be noted that any reset / sleep other than power-up reset will not stop or reset the RTC timer.

Also, the RTC timer can be used as a wakeup source. For details, see Section 9.5.3.

9.3.4 Voltage Regulators

ESP8684 has two regulators to maintain a constant power supply voltage to different power domains:

• Digital system voltage regulator for digital power domains;

• Low-power voltage regulator for RTC power domains.

Note:

For more detailed description about power domains, please refer to Section 9.5.1.

9.3.4.1 Digital System Voltage Regulator

ESP8684’s built-in digital system voltage regulator converts the external power supply (typically 3.3 V) to 1.1 V for

digital power domains. This regulator is controlled by the xpd_dig_reg signal. For details, see description of

Figure 9-1. For the architecture of the ESP8684 digital system voltage regulator, see Figure 9-4.

Espressif Systems 169
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Figure 9­4. Digital System Regulator

9.3.4.2 Low­power Voltage Regulator

ESP8684’s built-in low-power voltage regulator converts the external power supply (typically 3.3 V) to 1.1 V for

RTC power domains. Note when the pin CHIP_EN is at a high level, the low-power voltage regulator cannot be

turned off, but only switching between normal-work mode and Deep-sleep mode.

For the architecture of the ESP8684 low-power voltage regulator, see Figure 9-5.

Figure 9­5. Low­power voltage regulator

9.4 Brownout Detector

The brownout detector checks the voltage of pins VDDA, VDDA3P3, VDD3P3_RTC and VDD3P3_CPU. If the

voltage of these pins drops below the predefined threshold (2.7 V by default), the detector would trigger a signal

to shut down some power-consuming blocks (such as LNA, PA, etc.) to allow extra time for the digital system to

save and transfer important data.

The brownout detector has ultra-low power consumption and remains enabled whenever the chip is powered up.

Espressif Systems 170
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

For the architecture of the ESP8684 brownout detector, see Figure 9-6.

This diagram applies for ESP8684

Brown-out Detector

-
+VREF

comp
Brownout
detected-

-
-

VDD3P3_RTC

VDD3P3_CPU
 VDDA3P3

VDDA

Figure 9­6. Brownout detector

RTC_CNTL_BROWN_OUT_DET indicates the output level of brownout detector. This register is low level by

default, and outputs high level when the voltage on any of monitored pins drops below the predefined

threshold.
ESP32-S3 / c3 / 8684

0

1

Brownout
Detector

Brownout
Counter

Int
Comparer

Rst
Comparer bod_mode0_rst_sel

FIB

bod_mode1_rst_en

bod_mode1_sel

System Reset

Brownout detected

bod_mode0_en

bod_mode0_rst_en

bod_mode0_int

Chip Reset

System Reset

And

mode0

mode1

Figure 9­7. Brownout handling

As shown in the Figure 9-7, the brownout detector can handle the detected brownout signal in one of these two

methods described below according to user configuration:

• mode0: triggers an interrupt when the brownout counter counts to the threshold pre-defined in the

interrupt comparator (configured with RTC_CNTL_BROWN_OUT_INT_WAIT)

– Additionally, when bod_mode0_rst_en (RTC_CNTL_BROWN_OUT_RST_ENA) is enabled, the

brownout detector also resets the chip when the brownout counter counts to the threshold

pre-defined in the reset comparator (configured with RTC_CNTL_BROWN_OUT_RST_WAIT) based

on the rst_sel (configured with RTC_CNTL_BROWN_OUT_RST_SEL):

Espressif Systems 171
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

* 0: resets the chip

* 1: resets the system

For more information regarding chip reset and system reset, please refer to Chapter 6 Reset and Clock.

• mode1: resets the system directly.

To choose how the brownout detector handles the detected brownout signal:

• mode0: set the bod_mode0_en signal (configured with RTC_CNTL_BROWN_OUT_ENA).

• mode1: bod_mode1_sel

– 0: set the bod_mode1_rst_en signal (configured with RTC_CNTL_BROWN_OUT_ANA_RST_EN)

– 1: FIB bus

• Note that mode1 prevails mode0 when both options are enabled at the same time

9.5 Power Modes Management

9.5.1 Power Domains

ESP8684 has 6 power domains in three power domain categories:

• RTC

– Power management unit (PMU), including RTC timer and always-on registers

• Digital

– Digital including digital core and Wireless digital circuit

• Analog

– RC_FAST_CLK

– XTAL_CLK

– PLL_CLK

– RF Circuits

9.5.2 Pre­defined Power Modes

As mentioned earlier, ESP8684 has four power modes, which are predefined configurations that power up

different combinations of power domains. For details, please refer to Table 9-3.

Table 9­3. Predefined Power Modes

Power Domain

Power Mode PMU Digital RC_FAST_CLK XTAL_CLK PLL_CLK RF Circuits

Active ON ON ON ON ON ON

Modem-sleep ON ON ON ON ON OFF

Light-sleep ON ON OFF OFF OFF OFF

Deep-sleep ON OFF OFF OFF OFF OFF

Espressif Systems 172
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

By default, ESP8684 first enters the Active mode after system resets, then enters different low-power modes

(including Modem-sleep, Light-sleep, and Deep-sleep) to save power after the CPU stalls for a specific time (For

example, when CPU is waiting to be wakened up by an external event). From modes Active to Deep-sleep, the

number of available functionalities1 and power consumption2 decreases and wakeup latency increases. Also, the

supported wakeup sources for different power modes are different3. Users can choose a power mode based on

their requirements of functionality, power consumption, wakeup latency, and available wakeup sources.

Note:

1. For details, please refer to Table 9-3.

2. For details on power consumption, please refer to the Current Consumption Characteristics in ESP8684 Datasheet.

3. For details on the supported wakeup sources, please refer to Section 9.5.3.

9.5.3 Wakeup Sources

The ESP8684 supports various wakeup sources, which could wake up the CPU in different sleep modes. The

wakeup source is determined by RTC_CNTL_WAKEUP_ENA as shown in Table 9-4.

Table 9­4. Wakeup Source

WAKEUP_ENA Wakeup Source Light­sleep Deep­sleep

0x4 GPIO1 Y Y

0x8 RTC Timer Y Y

0x20 Wi-Fi2 Y -

0x40 UART03 Y -

0x80 UART13 Y -

0x400 Bluetooth Y -

1 In Deep-sleep mode, only the RTC GPIOs (not regular GPIOs) can

work as a wakeup source.
2 To wake up the chip with a Wi-Fi source, the chip switches be-

tween the Active, Modem-sleep, and Light-sleepmodes. The CPU

and RF modules are woken up at predetermined intervals to keep

Wi-Fi connections active.
3 A wakeup is triggered when the number of RX pulses

received exceeds the setting in the threshold register

UART_SLEEP_CONF_REG. For details, please refer to Chapter

19 UART Controller (UART).

Espressif Systems 173
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/sites/default/files/documentation/ESP8684{}_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

9.5.4 Reject Sleep

ESP8684 implements a hardware mechanism that equips the chip with the ability to reject to sleep, which

prevents the chip from going to sleep unexpectedly when some peripherals are still working but not detected by

the CPU, thus guaranteeing the proper functioning of the peripherals.

Table 9­5. Reject Source

REJECT_ENA Reject Source

0x4 GPIO

0x8 RTC Timer

0x20 Wi-Fi

0x400 Bluetooth

Users can configure the reject to sleep option according to Table 9-5 via the following registers.

• Configure the RTC_CNTL_SLEEP_REJECT_ENA field to enable or disable the option to reject to sleep:

– Set RTC_CNTL_LIGHT_SLP_REJECT_EN to enable reject-to-light-sleep.

– Set RTC_CNTL_DEEP_SLP_REJECT_EN to enable reject-to-deep-sleep.

• Read RTC_CNTL_SLP_REJECT_CAUSE_REG to check the reason for rejecting to sleep.

Espressif Systems 174
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

9.6 Register Summary

The addresses in this section are relative to low-power management base address provided in Table 3-3 in

Chapter 3 System and Memory.

Name Description Address Access

Control / Configuration Registers

RTC_CNTL_OPTIONS0_REG

Configures the power options of crystal

and PLL clocks, and initiates reset by

software

0x0000 varies

RTC_CNTL_SLP_TIMER0_REG RTC timer threshold register 0 0x0004 R/W

RTC_CNTL_SLP_TIMER1_REG RTC timer threshold register 1 0x0008 R/W

RTC_CNTL_TIME_UPDATE_REG RTC timer update control register 0x000C R/W

RTC_CNTL_TIME_LOW0_REG
Represents the lower 32 bits of RTC timer

0
0x0010 R/W

RTC_CNTL_TIME_HIGH0_REG
Represents the higher 16 bits of RTC timer

0
0x0014 R/W

RTC_CNTL_STATE0_REG Configures the sleep / reject / wakeup state 0x0018 R/W

RTC_CNTL_TIMER1_REG Configures CPU stall options 0x001C R/W

RTC_CNTL_TIMER2_REG
Configures RTC_SLOW_CLK and touch

controller
0x0020 R/W

RTC_CNTL_ANA_CONF_REG
Configures the power options for I2C and

PLLA
0x002C R/W

RTC_CNTL_WAKEUP_STATE_REG Wakeup bitmap enabling register 0x0034 R/W

RTC_CNTL_STORE0_REG Reservation register 0 0x0048 R/W

RTC_CNTL_STORE1_REG Reservation register 1 0x004C R/W

RTC_CNTL_STORE2_REG Reservation register 2 0x0050 R/W

RTC_CNTL_STORE3_REG Reservation register 3 0x0054 R/W

RTC_CNTL_EXT_WAKEUP_CONF_REG GPIO wakeup configuration register 0x005C R/W

RTC_CNTL_SLP_REJECT_CONF_REG Configures sleep / reject options 0x0060 R/W

RTC_CNTL_CLK_CONF_REG RTC timer configuration register 0x0068 R/W

RTC_CNTL_REG RTC configuration register 0x0074 R/W

RTC_CNTL_PWC_REG RTC power configuration register 0x0078 R/W

RTC_CNTL_DIG_PWC_REG Digital system power configuration register 0x007C R/W

RTC_CNTL_DIG_ISO_REG
Digital system isolation configuration

register
0x0080 R/W

RTC_CNTL_WDTCONFIG0_REG RTC watchdog configuration register 0x0084 R/W

RTC_CNTL_WDTCONFIG1_REG
Configures the hold time of RTC watchdog

in stage 0
0x0088 R/W

RTC_CNTL_WDTCONFIG2_REG
Configures the hold time of RTC watchdog

in stage 1
0x008C R/W

RTC_CNTL_WDTCONFIG3_REG
Configures the hold time of RTC watchdog

in stage 2
0x0090 R/W

RTC_CNTL_WDTCONFIG4_REG
Configures the hold time of RTC watchdog

in stage 3
0x0094 R/W

Espressif Systems 175
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Name Description Address Access

RTC_CNTL_WDTFEED_REG
RTC watchdog SW feed configuration

register
0x0098 R/W

RTC_CNTL_WDTWPROTECT_REG
RTC watchdog write protection

configuration register
0x009C R/W

RTC_CNTL_SWD_CONF_REG Super watchdog configuration register 0x00A0 R/W

RTC_CNTL_SWD_WPROTECT_REG
Super watchdog write protection

configuration register
0x00A4 R/W

RTC_CNTL_SW_CPU_STALL_REG CPU stall configuration register 0x00A8 R/W

RTC_CNTL_STORE4_REG Reservation register 4 0x00AC R/W

RTC_CNTL_STORE5_REG Reservation register 5 0x00B0 R/W

RTC_CNTL_STORE6_REG Reservation register 6 0x00B4 R/W

RTC_CNTL_STORE7_REG Reservation register 7 0x00B8 R/W

RTC_CNTL_PAD_HOLD_REG Configures the hold options for RTC GPIOs 0x00C4 R/W

RTC_CNTL_DIG_PAD_HOLD_REG
Configures the hold options for digital

GPIOs
0x00C8 R/W

RTC_CNTL_BROWN_OUT_REG Brownout configuration register 0x00CC R/W

RTC_CNTL_TIME_LOW1_REG
Represents the lower 32 bits of RTC timer

1
0x00D0 R/W

RTC_CNTL_TIME_HIGH1_REG
Represents the higher 16 bits of RTC timer

1
0x00D4 R/W

RTC_CNTL_USB_CONF_REG IO_MUX configuration register 0x00D8 R/W

RTC_CNTL_SLP_REJECT_CAUSE_REG Represents the reject-to-sleep cause 0x00DC R/W

RTC_CNTL_OPTION1_REG RTC option register 0x00E0 R/W

RTC_CNTL_SLP_WAKEUP_CAUSE_REG Represents the sleep-to-wakeup cause. 0x00E4 R/W

RTC_CNTL_CNTL_GPIO_WAKEUP_REG GPIO wakeup configuration register 0x00FC R/W

RTC_CNTL_CNTL_SENSOR_CTRL_REG SAR ADC control register 0x0108 R/W

RTC_CNTL_FIB_SEL_REG Brownout detector configuration register 0x00F8 R/W

Status Registers

RTC_CNTL_RESET_STATE_REG Represents the CPU reset source 0x0030 R/W

RTC_CNTL_LOW_POWER_ST_REG Represents the RTC state 0x00BC R/W

Interrupt Registers

RTC_CNTL_INT_ENA_RTC_REG RTC interrupt enabling register 0x0038 R/W

RTC_CNTL_INT_RAW_RTC_REG RTC interrupt raw register 0x003C R/W

RTC_CNTL_INT_ST_RTC_REG RTC interrupt state register 0x0040 R/W

RTC_CNTL_INT_CLR_RTC_REG RTC interrupt clear register 0x0044 R/W

RTC_CNTL_INT_ENA_RTC_W1TS_REG RTC interrupt enabling register (W1TS) 0x00EC R/W

RTC_CNTL_INT_ENA_RTC_W1TC_REG RTC interrupt clear register (W1TC) 0x00F0 R/W

Espressif Systems 176
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

9.7 Registers

The addresses in this section are relative to low-power management base address provided in Table 3-3 in

Chapter 3 System and Memory.

Register 9.1. RTC_CNTL_OPTIONS0_REG (0x0000)

RT
C_
CN
TL
_S
W
_S
YS
_R
ST

0

31

RT
C_
CN
TL
_D
G_
W
RA
P_
FO
RC
E_
NO
RS
T

0

30

RT
C_
CN
TL
_D
G_
W
RA
P_
FO
RC
E_
RS
T

0

29

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 14

RT
C_
CN
TL
_X
TL
_F
OR
CE
_P
U

0

13

RT
C_
CN
TL
_X
TL
_F
OR
CE
_P
D

0

12

RT
C_
CN
TL
_B
BP
LL
_F
OR
CE
_P
U

0

11

RT
C_
CN
TL
_B
BP
LL
_F
OR
CE
_P
D

0

10

RT
C_
CN
TL
_B
BP
LL
_I2
C_
FO
RC
E_
PU

0

9

RT
C_
CN
TL
_B
BP
LL
_I2
C_
FO
RC
E_
PD

0

8

RT
C_
CN
TL
_B
B_
I2C
_F
OR
CE
_P
U

0

7

RT
C_
CN
TL
_B
B_
I2C
_F
OR
CE
_P
D

0

6

RT
C_
CN
TL
_S
W
_P
RO
CP
U_
RS
T

0

5

(re
se
rve
d)

0

4

RT
C_
CN
TL
_S
W
_S
TA
LL
_P
RO
CP
U_
C0

0x0

3 2

(re
se
rve
d)

0 0

1 0

Reset

RTC_CNTL_SW_STALL_PROCPU_C0 Write 0x2 to stall the CPU by SW. Valid only when

RTC_CNTL_SW_STALL_PROCPU_C1 is configured to 0x21. (R/W)

RTC_CNTL_SW_PROCPU_RST Write 1 to reset the CPU by SW. (WO)

RTC_CNTL_BB_I2C_FORCE_PD Write 1 to FPD BB_I2C. (R/W)

RTC_CNTL_BB_I2C_FORCE_PU Write 1 to FPU BB_I2C. (R/W)

RTC_CNTL_BBPLL_I2C_FORCE_PD Write 1 to FPD BB_PLL_I2C. (R/W)

RTC_CNTL_BBPLL_I2C_FORCE_PU Write 1 to FPU BB_PLL_I2C. (R/W)

RTC_CNTL_BBPLL_FORCE_PD Write 1 to FPD BB_PLL. (R/W)

RTC_CNTL_BBPLL_FORCE_PU Write 1 to FPU BB_PLL. (R/W)

RTC_CNTL_XTL_FORCE_PD Write 1 to FPD the XTAL_CLK. (R/W)

RTC_CNTL_XTL_FORCE_PU Write 1 to FPU the XTAL_CLK. (R/W)

RTC_CNTL_DG_WRAP_FORCE_RST Write 1 to force reset the digital system in deep-sleep. (R/W)

RTC_CNTL_DG_WRAP_FORCE_NORST Write 1 to disable force reset to the digital system in deep-

sleep. (R/W)

RTC_CNTL_SW_SYS_RST Write 1 to reset the digital power category via SW. (WO)

Espressif Systems 177
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.2. RTC_CNTL_SLP_TIMER0_REG (0x0004)

RT
C_
CN
TL
_S
LP
_V
AL
_L
O

0x000000

31 0

Reset

RTC_CNTL_SLP_VAL_LO Configures the lower 32 bits of the trigger threshold for the RTC timer.

(R/W)

Register 9.3. RTC_CNTL_SLP_TIMER1_REG (0x0008)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

RT
C_
CN
TL
_M
AI
N_
TIM

ER
_A
LA
RM
_E
N

0

16

RT
C_
CN
TL
_S
LP
_V
AL
_H
I

0x00

15 0

Reset

RTC_CNTL_SLP_VAL_HI Configures the higher 16 bits of the trigger threshold for the RTC timer.

(R/W)

RTC_CNTL_MAIN_TIMER_ALARM_EN Write 1 to enable the timer alarm. (R/W)

Register 9.4. RTC_CNTL_TIME_UPDATE_REG (0x000C)

RT
C_
CN
TL
_T
IM
E_
UP
DA
TE

0

31

(re
se
rve
d)

0

30

RT
C_
CN
TL
_T
IM
ER
_S
YS
_R
ST

0

29

RT
C_
CN
TL
_T
IM
ER
_X
TL
_O
FF

0

28

RT
C_
CN
TL
_T
IM
ER
_S
YS
_S
TA
LL

0

27

(re
se
rve
d)

0 0

26 0

Reset

RTC_CNTL_TIMER_SYS_STALL Write 1 to enable recording digital system stall time. (R/W)

RTC_CNTL_TIMER_XTL_OFF Write 1 to enable recording XTAL_CLK OFF time. (R/W)

RTC_CNTL_TIMER_SYS_RST Write 1 to enable recording digital system reset time. (R/W)

RTC_CNTL_TIME_UPDATE Write 1 to update register with RTC timer. (R/W)

Espressif Systems 178
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.5. RTC_CNTL_TIME_LOW0_REG (0x0010)

RT
C_
CN
TL
_T
IM
ER
_V
AL
UE
0_
LO
W

0x000000

31 0

Reset

RTC_CNTL_TIMER_VALUE0_LOW Represents the lower 32 bits of RTC timer 0. (R/W)

Register 9.6. RTC_CNTL_TIME_HIGH0_REG (0x0014)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

RT
C_
CN
TL
_T
IM
ER
_V
AL
UE
0_
HI
GH

0x00

15 0

Reset

RTC_CNTL_TIMER_VALUE0_HIGH Represents the higher 16 bits of RTC timer 0. (R/W)

Espressif Systems 179
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.7. RTC_CNTL_STATE0_REG (0x0018)

RT
C_
CN
TL
_S
LE
EP
_E
N

0

31

RT
C_
CN
TL
_S
LP
_R
EJ
EC
T

0

30

RT
C_
CN
TL
_S
LP
_W
AK
EU
P

0

29

RT
C_
CN
TL
_S
DI
O_
AC
TIV
E_
IN
D

0

28

(re
se
rve
d)

0 0 0 0 0

27 23

RT
C_
CN
TL
_A
PB
2R
TC
_B
RI
DG
E_
SE
L

0

22

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 2

RT
C_
CN
TL
_S
LP
_R
EJ
EC
T_
CA
US
E_
CL
R

0

1

RT
C_
CN
TL
_S
W
_C
PU
_IN
T

0

0

Reset

RTC_CNTL_SW_CPU_INT Write 1 to send a SW RTC interrupt to CPU. (R/W)

RTC_CNTL_SLP_REJECT_CAUSE_CLR Write 1 to clear the RTC reject-to-sleep cause. (R/W)

RTC_CNTL_APB2RTC_BRIDGE_SEL Configures the APB to RTC option.

0x0: APB to RTC using sync

0x1: APB to RTC using bridge

(R/W)

RTC_CNTL_SDIO_ACTIVE_IND Represents the SDIO is active. (R/W)

RTC_CNTL_SLP_WAKEUP Represents wakeup events. (R/W)

RTC_CNTL_SLP_REJECT Represents reject-to-sleep events. (R/W)

RTC_CNTL_SLEEP_EN Write 1 to send the chip to sleep. (R/W)

Register 9.8. RTC_CNTL_TIMER1_REG (0x001C)

RT
C_
CN
TL
_P
LL
_B
UF
_W
AI
T

40

31 24

RT
C_
CN
TL
_X
TL
_B
UF
_W
AI
T

80

23 14

RT
C_
CN
TL
_F
OS
C_
W
AI
T

0x10

13 6

RT
C_
CN
TL
_C
PU
_S
TA
LL
_W
AI
T

1

5 1

RT
C_
CN
TL
_C
PU
_S
TA
LL
_E
N

1

0

Reset

RTC_CNTL_CPU_STALL_EN Write 1 to enable CPU stalling. (R/W)

RTC_CNTL_CPU_STALL_WAIT Configures CPU stall wait cycles using RTC_FAST_CLK. (R/W)

RTC_CNTL_FOSC_WAIT Configures the RC_FAST_CLK wait cycles using RTC_SLOW_CLK. (R/W)

RTC_CNTL_XTL_BUF_WAIT Configures XTAL_CLK wait cycles using RTC_SLOW_CLK. (R/W)

RTC_CNTL_PLL_BUF_WAIT Configures the PLL_CLK wait cycles using RTC_SLOW_CLK. (R/W)

Espressif Systems 180
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.9. RTC_CNTL_TIMER2_REG (0x0020)

RT
C_
CN
TL
_M
IN
_T
IM
E_
FO
SC
_O
FF

0x1

31 24

(re
se
rve
d)

0 0

23 0

Reset

RTC_CNTL_MIN_TIME_FOSC_OFF Configures the minimal cycle for RC_FAST_CLK (using

RTC_SLOW_CLK) when powered down. (R/W)

Register 9.10. RTC_CNTL_ANA_CONF_REG (0x002C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0

31 23

RT
C_
CN
TL
_S
AR
_I2
C_
PU

1

22

(re
se
rve
d)

0 0

21 20

RT
C_
CN
TL
_I2
C_
RE
SE
T_
PO
R_
FO
RC
E_
PU

0

19

RT
C_
CN
TL
_I2
C_
RE
SE
T_
PO
R_
FO
RC
E_
PD

1

18

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0

Reset

RTC_CNTL_I2C_RESET_POR_FORCE_PD Write 1 to force not bypass I2C power-on reset. (R/W)

RTC_CNTL_I2C_RESET_POR_FORCE_PU Write 1 to force bypass I2C power-on reset. (R/W)

RTC_CNTL_SAR_I2C_PU Write 1 to FPU the SAR_I2C. (R/W)

Register 9.11. RTC_CNTL_WAKEUP_STATE_REG (0x0034)

RT
C_
CN
TL
_W
AK
EU
P_
EN
A

12

31 15

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0

Reset

RTC_CNTL_WAKEUP_ENA Configures the wakeup source. For details, please refer to Table 9-4.

(R/W)

Espressif Systems 181
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.12. RTC_CNTL_STORE0_REG (0x0048)

RT
C_
CN
TL
_S
CR
AT
CH
0

0

31 0

Reset

RTC_CNTL_SCRATCH0 Reservation register 0. (R/W)

Register 9.13. RTC_CNTL_STORE1_REG (0x004C)

RT
C_
CN
TL
_S
CR
AT
CH
1

0

31 0

Reset

RTC_CNTL_SCRATCH1 Reservation register 1. (R/W)

Register 9.14. RTC_CNTL_STORE2_REG (0x0050)

RT
C_
CN
TL
_S
CR
AT
CH
2

0

31 0

Reset

RTC_CNTL_SCRATCH2 Reservation register 2. (R/W)

Register 9.15. RTC_CNTL_STORE3_REG (0x0054)

RT
C_
CN
TL
_S
CR
AT
CH
3

0

31 0

Reset

RTC_CNTL_SCRATCH3 Reservation register 3. (R/W)

Espressif Systems 182
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.16. RTC_CNTL_EXT_WAKEUP_CONF_REG (0x005C)

RT
C_
CN
TL
_G
PI
O_
W
AK
EU
P_
FIL
TE
R

0

31

(re
se
rve
d)

0 0

30 0

Reset

RTC_CNTL_GPIO_WAKEUP_FILTER Write 1 to enable the GPIO wakeup event filter. (R/W)

Register 9.17. RTC_CNTL_SLP_REJECT_CONF_REG (0x0060)

RT
C_
CN
TL
_D
EE
P_
SL
P_
RE
JE
CT
_E
N

0

31

RT
C_
CN
TL
_L
IG
HT
_S
LP
_R
EJ
EC
T_
EN

0

30

RT
C_
CN
TL
_S
LE
EP
_R
EJ
EC
T_
EN
A

0

29 12

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

RTC_CNTL_SLEEP_REJECT_ENA Write 1 to enable reject-to-sleep. (R/W)

RTC_CNTL_LIGHT_SLP_REJECT_EN Write 1 to enable reject-to-light-sleep. (R/W)

RTC_CNTL_DEEP_SLP_REJECT_EN Write 1 to enable reject-to-deep-sleep. (R/W)

Espressif Systems 183
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.18. RTC_CNTL_CLK_CONF_REG (0x0068)

RT
C_
CN
TL
_A
NA
_C
LK
_R
TC
_S
EL

0

31 30

RT
C_
CN
TL
_F
AS
T_
CL
K_
RT
C_
SE
L

0

29

RT
C_
CN
TL
_X
TA
L_
GL
OB
AL
_F
OR
CE
_N
OG
AT
IN
G

1

28

RT
C_
CN
TL
_X
TA
L_
GL
OB
AL
_F
OR
CE
_G
AT
IN
G

0

27

RT
C_
CN
TL
_F
OS
C_
FO
RC
E_
PU

0

26

RT
C_
CN
TL
_F
OS
C_
FO
RC
E_
PD

0

25

RT
C_
CN
TL
_F
OS
C_
DF
RE
Q

172

24 17

RT
C_
CN
TL
_F
OS
C_
FO
RC
E_
NO
GA
TIN
G

0

16

RT
C_
CN
TL
_X
TA
L_
FO
RC
E_
NO
GA
TIN
G

0

15

RT
C_
CN
TL
_F
OS
C_
DI
V_
SE
L

3

14 12

(re
se
rve
d)

0

11

RT
C_
CN
TL
_D
IG
_C
LK
8M
_E
N

0

10

(re
se
rve
d)

1

9

(re
se
rve
d)

0

8

RT
C_
CN
TL
_E
NB
_F
OS
C_
DI
V

0

7

RT
C_
CN
TL
_E
NB
_F
OS
C

0

6

RT
C_
CN
TL
_F
OS
C_
DI
V

1

5 4

RT
C_
CN
TL
_F
OS
C_
DI
V_
SE
L_
VL
D

1

3

RT
C_
CN
TL
_E
FU
SE
_C
LK
_F
OR
CE
_N
OG
AT
IN
G

0

2

RT
C_
CN
TL
_E
FU
SE
_C
LK
_F
OR
CE
_G
AT
IN
G

0

1

(re
se
rve
d)

0

0

Reset

RTC_CNTL_EFUSE_CLK_FORCE_GATING Write 1 to FPU the eFuse clock gating. (R/W)

RTC_CNTL_EFUSE_CLK_FORCE_NOGATING Write 1 to FPD the eFuse clock gating. (R/W)

RTC_CNTL_FOSC_DIV_SEL_VLD Write 1 to synchronize RTC_CNTL_FOSC_DIV_SEL. Note that

you have to invalidate the bus before modifying the frequency divider, then validate the new di-

vider clock. (R/W)

RTC_CNTL_FOSC_DIV Configures the RC_FAST_DIV_CLK divider.

0x0: divided by 128

0x1: divided by 256

0x2: divided by 512

0x3: divided by 1024

(R/W)

RTC_CNTL_ENB_FOSC Write 1 to disable RC_FAST_CLK and RC_FAST_DIV_CLK. (R/W)

RTC_CNTL_ENB_FOSC_DIV Configures the RC_FAST_CLK divider.

0x0: RC_FAST_CLK divided by 256

0x1: RC_FAST_CLK

(R/W)

RTC_CNTL_DIG_FOSC_EN Write 1 to enable RC_FAST_CLK for the digital system. (R/W)

RTC_CNTL_FOSC_DIV_SEL Represents the RC_FAST_CLK divider, which is

RTC_CNTL_FOSC_DIV_SEL + 1. (R/W)

Continued on the next page...

Espressif Systems 184
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.18. RTC_CNTL_CLK_CONF_REG (0x0068)

Continued from the previous page...

RTC_CNTL_XTAL_FORCE_NOGATING Write 1 to force no gating to XTAL_CLK during sleep. (R/W)

RTC_CNTL_FOSC_FORCE_NOGATING Write 1 to disable force gating to XTAL_CLK during sleep.

(R/W)

RTC_CNTL_FOSC_DFREQ Configures the RC_FAST_CLK frequency. (R/W)

RTC_CNTL_FOSC_FORCE_PD Write 1 to FPD RC_FAST_CLK. (R/W)

RTC_CNTL_FOSC_FORCE_PU Write 1 to FPU RC_FAST_CLK. (R/W)

RTC_CNTL_XTAL_GLOBAL_FORCE_GATING Write 1 to force enable XTAL_CLK clock gating.

(R/W)

RTC_CNTL_XTAL_GLOBAL_FORCE_NOGATING Write 1 to force bypass the XTAL_CLK clock gat-

ing. (R/W)

RTC_CNTL_FAST_CLK_RTC_SEL Configures the RTC_FAST_CLK.

0x0: XTAL_DIV_CLK

0x1: FOSC_DIV

(R/W)

RTC_CNTL_ANA_CLK_RTC_SEL Configures the RTC_SLOW_CLK.

0x0: RC_SLOW_CLK

0x1: OSC_SLOW_CLK

0x2: RC_FAST_DIV_CLK

0x3: Reserved

(R/W)

Espressif Systems 185
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.19. RTC_CNTL_REG (0x0074)

RT
C_
CN
TL
_R
EG
UL
AT
OR
_F
OR
CE
_P
U

1

31

RT
C_
CN
TL
_R
EG
UL
AT
OR
_F
OR
CE
_P
D

0

30

(re
se
rve
d)

0 0 0 0 0 0 0 0

29 22

RT
C_
CN
TL
_S
CK
_D
CA
P

0

21 14

(re
se
rve
d)

0 0 0 0 0 0

13 8

RT
C_
CN
TL
_D
IG
_R
EG
_C
AL
_E
N

0

7

(re
se
rve
d)

0 0 0 0 0 0 0

6 0

Reset

RTC_CNTL_DIG_REG_CAL_EN Write 1 to enable digital regulator calibration by SW. (R/W)

RTC_CNTL_SCK_DCAP Configures the RC_SLOW_CLK frequency. (R/W)

RTC_CNTL_REGULATOR_FORCE_PD Write 1 to FPD the low-power voltage regulator, which

means decreasing its voltage to 0.8 V or lower. (R/W)

RTC_CNTL_REGULATOR_FORCE_PU Write 1 to FPU the low-power voltage regulator, which

means increasing its voltage to higher than 0.8 V. (R/W)

Register 9.20. RTC_CNTL_PWC_REG (0x0078)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

RT
C_
CN
TL
_P
AD
_F
OR
CE
_H
OL
D

0

21

(re
se
rve
d)

0 0

20 0

Reset

RTC_CNTL_PAD_FORCE_HOLD Write 1 to force RTC pad into hold state. (R/W)

Espressif Systems 186
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.21. RTC_CNTL_DIG_PWC_REG (0x007C)

RT
C_
CN
TL
_D
G_
W
RA
P_
PD
_E
N

0

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

30 21

RT
C_
CN
TL
_D
G_
W
RA
P_
FO
RC
E_
PU

1

20

RT
C_
CN
TL
_D
G_
W
RA
P_
FO
RC
E_
PD

0

19

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 4

RT
C_
CN
TL
_V
DD
_S
PI
_P
D_
EN

0

3

RT
C_
CN
TL
_V
DD
_S
PI
_P
W
R_
FO
RC
E

0

2

RT
C_
CN
TL
_V
DD
_S
PI
_P
W
R_
DR
V

0

1 0

Reset

RTC_CNTL_VDD_SPI_PWR_DRV Configures the vdd_spi’s drive intensity. (R/W)

RTC_CNTL_VDD_SPI_PWR_FORCE Write 1 to allow software to configure vdd_spi’s drive intensity.

(R/W)

RTC_CNTL_VDD_SPI_PD_EN Write 1 to power down VDD_SPI in sleep. (R/W)

RTC_CNTL_DG_WRAP_FORCE_PD Write 1 to FPD the digital system. (R/W)

RTC_CNTL_DG_WRAP_FORCE_PU Write 1 to FPU the digital system. (R/W)

RTC_CNTL_DG_WRAP_PD_EN Write 1 to enable FPD digital system in sleep. (R/W)

Espressif Systems 187
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.22. RTC_CNTL_DIG_ISO_REG (0x0080)

RT
C_
CN
TL
_D
G_
W
RA
P_
FO
RC
E_
NO
IS
O

1

31

RT
C_
CN
TL
_D
G_
W
RA
P_
FO
RC
E_
IS
O

0

30

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 16

RT
C_
CN
TL
_D
G_
PA
D_
FO
RC
E_
HO
LD

0

15

RT
C_
CN
TL
_D
G_
PA
D_
FO
RC
E_
UN
HO
LD

1

14

RT
C_
CN
TL
_D
G_
PA
D_
FO
RC
E_
IS
O

0

13

RT
C_
CN
TL
_D
G_
PA
D_
FO
RC
E_
NO
IS
O

1

12

RT
C_
CN
TL
_D
G_
PA
D_
AU
TO
HO
LD
_E
N

0

11

RT
C_
CN
TL
_C
LR
_D
G_
PA
D_
AU
TO
HO
LD

0

10

RT
C_
CN
TL
_D
G_
PA
D_
AU
TO
HO
LD

0

9

(re
se
rve
d)

0 0 0 0 0 0 0 0 0

8 0

Reset

RTC_CNTL_DG_PAD_AUTOHOLD Indicates the auto-hold status of the digital GPIOs. (R/W)

RTC_CNTL_CLR_DG_PAD_AUTOHOLD Write 1 to clear the auto-hold enabler for the digital GPIOs.

(R/W)

RTC_CNTL_DG_PAD_AUTOHOLD_EN Write 1 to allow the digital GPIOs to enter the auto-hold sta-

tus. (R/W)

RTC_CNTL_DG_PAD_FORCE_NOISO Write 1 to disable the force isolation of the digital GPIOs.

(R/W)

RTC_CNTL_DG_PAD_FORCE_ISO Write 1 to force isolation of the digital GPIOs. (R/W)

RTC_CNTL_DG_PAD_FORCE_UNHOLD Write 1 the force unhold the digital GPIOs. (R/W)

RTC_CNTL_DG_PAD_FORCE_HOLD Write 1 the force hold the digital GPIOs. (R/W)

RTC_CNTL_DG_WRAP_FORCE_ISO Write 1 to force isolation of the digital system. (R/W)

RTC_CNTL_DG_WRAP_FORCE_NOISO Write 1 to disable the force isolation of the digital system.

(R/W)

Espressif Systems 188
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.23. RTC_CNTL_WDTCONFIG0_REG (0x0084)

RT
C_
CN
TL
_W
DT
_E
N

0

31

RT
C_
CN
TL
_W
DT
_S
TG
0

0x0

30 28

RT
C_
CN
TL
_W
DT
_S
TG
1

0x0

27 25

RT
C_
CN
TL
_W
DT
_S
TG
2

0x0

24 22

RT
C_
CN
TL
_W
DT
_S
TG
3

0x0

21 19

RT
C_
CN
TL
_W
DT
_C
PU
_R
ES
ET
_L
EN
GT
H

0x1

18 16

RT
C_
CN
TL
_W
DT
_S
YS
_R
ES
ET
_L
EN
GT
H

0x1

15 13

RT
C_
CN
TL
_W
DT
_F
LA
SH
BO
OT
_M
OD
_E
N

1

12

RT
C_
CN
TL
_W
DT
_P
RO
CP
U_
RE
SE
T_
EN

0

11

(re
se
rve
d)

0

10

RT
C_
CN
TL
_W
DT
_P
AU
SE
_IN
_S
LP

1

9

(re
se
rve
d)

0 0 0 0 0 0 0 0 0

8 0

Reset

RTC_CNTL_WDT_PAUSE_IN_SLP Write 1 to pause the watchdog in sleep. (R/W)

RTC_CNTL_WDT_PROCPU_RESET_EN Write 1 to enable RTC WDT to reset CPU. (R/W)

RTC_CNTL_WDT_FLASHBOOT_MOD_EN Write 1 to enable watchdog when the chip boots from

flash. (R/W)

RTC_CNTL_WDT_SYS_RESET_LENGTH Configures the length of the digital system reset counter.

(R/W)

RTC_CNTL_WDT_CPU_RESET_LENGTH Configures the length of the CPU reset counter. (R/W)

RTC_CNTL_WDT_STG3 Configures the timeout action for RTC watchdog timer at stage 3.

0x1: triggers an interrupt

0x2: resets the CPU core

0x3: resets the digital system excluding RTC

0x4: resets the digital system including RTC

(R/W)

RTC_CNTL_WDT_STG2 Configures the timeout action for RTC watchdog timer at stage 2.

0x1: triggers an interrupt

0x2: resets the CPU core

0x3: resets the digital system excluding RTC

0x4: resets the digital system including RTC

(R/W)

Continued on the next page...

Espressif Systems 189
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.23. RTC_CNTL_WDTCONFIG0_REG (0x0084)

Continued from the previous page...

RTC_CNTL_WDT_STG1 Configures the timeout action for RTC watchdog timer at stage 1.

0x1: triggers an interrupt

0x2: resets the CPU core

0x3: resets the digital system excluding RTC

0x4: resets the digital system including RTC

(R/W)

RTC_CNTL_WDT_STG0 Configures the timeout action for RTC watchdog timer at stage 0.

0x1: triggers an interrupt

0x2: resets the CPU core

0x3: resets the digital system excluding RTC

0x4: resets the digital system including RTC

(R/W)

RTC_CNTL_WDT_EN Write 1 to enable the RTC watchdog. (R/W)

Register 9.24. RTC_CNTL_WDTCONFIG1_REG (0x0088)

RT
C_
CN
TL
_W
DT
_S
TG
0_
HO
LD

200000

31 0

Reset

RTC_CNTL_WDT_STG0_HOLD Configures the hold time of RTC watchdog in stage 0. (R/W)

Register 9.25. RTC_CNTL_WDTCONFIG2_REG (0x008C)

RT
C_
CN
TL
_W
DT
_S
TG
1_
HO
LD

80000

31 0

Reset

RTC_CNTL_WDT_STG1_HOLD Configures the hold time of RTC watchdog in stage 1. (R/W)

Espressif Systems 190
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.26. RTC_CNTL_WDTCONFIG3_REG (0x0090)

RT
C_
CN
TL
_W
DT
_S
TG
2_
HO
LD

0x000fff

31 0

Reset

RTC_CNTL_WDT_STG2_HOLD Configures the hold time of RTC watchdog in stage 2. (R/W)

Register 9.27. RTC_CNTL_WDTCONFIG4_REG (0x0094)

RT
C_
CN
TL
_W
DT
_S
TG
3_
HO
LD

0x000fff

31 0

Reset

RTC_CNTL_WDT_STG3_HOLD Configures the hold time of RTC watchdog in stage 3. (R/W)

Register 9.28. RTC_CNTL_WDTFEED_REG (0x0098)

RT
C_
CN
TL
_W
DT
_F
EE
D

0

31

(re
se
rve
d)

0 0

30 0

Reset

RTC_CNTL_WDT_FEED Write 1 to feed the RTC watchdog. (R/W)

Espressif Systems 191
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.29. RTC_CNTL_WDTWPROTECT_REG (0x009C)

RT
C_
CN
TL
_W
DT
_W
KE
Y

0x000000

31 0

Reset

RTC_CNTL_WDT_WKEY Configures the write protection key of the RTC watchdog. (R/W)

Register 9.30. RTC_CNTL_SWD_CONF_REG (0x00A0)

RT
C_
CN
TL
_S
W
D_
AU
TO
_F
EE
D_
EN

0

31

RT
C_
CN
TL
_S
W
D_
DI
SA
BL
E

0

30

RT
C_
CN
TL
_S
W
D_
FE
ED

0

29

RT
C_
CN
TL
_S
W
D_
RS
T_
FL
AG
_C
LR

0

28

RT
C_
CN
TL
_S
W
D_
SI
GN
AL
_W
ID
TH

300

27 18

RT
C_
CN
TL
_S
W
D_
BY
PA
SS
_R
ST

0

17

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 2

RT
C_
CN
TL
_S
W
D_
FE
ED
_IN
T

0

1

RT
C_
CN
TL
_S
W
D_
RE
SE
T_
FL
AG

0

0

Reset

RTC_CNTL_SWD_RESET_FLAG Represents the super watchdog reset flag. (R/W)

RTC_CNTL_SWD_FEED_INT Represents super watchdog will be fed via SW. (R/W)

RTC_CNTL_SWD_BYPASS_RST Write 1 to bypass super watchdog reset. (R/W)

RTC_CNTL_SWD_SIGNAL_WIDTH Configures the signal width sent to the super watchdog. (R/W)

RTC_CNTL_SWD_RST_FLAG_CLR Write 1 to reset the super watchdog reset flag. (R/W)

RTC_CNTL_SWD_FEED Write 1 to feed the super watchdog via SW. (R/W)

RTC_CNTL_SWD_DISABLE Write 1 to disable super watchdog. (R/W)

RTC_CNTL_SWD_AUTO_FEED_EN Write 1 to enable automatic watchdog feeding upon interrupt.

(R/W)

Espressif Systems 192
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.31. RTC_CNTL_SWD_WPROTECT_REG (0x00A4)

RT
C_
CN
TL
_S
W
D_
W
KE
Y

0x000000

31 0

Reset

RTC_CNTL_SWD_WKEY Configures the write protection key of the super watchdog. (R/W)

Register 9.32. RTC_CNTL_SW_CPU_STALL_REG (0x00A8)

RT
C_
CN
TL
_S
W
_S
TA
LL
_P
RO
CP
U_
C1

0

31 26

(re
se
rve
d)

0 0

25 0

Reset

RTC_CNTL_SW_STALL_PROCPU_C1 Write 0x21 to stall the CPU by SW. Valid only when

RTC_CNTL_SW_STALL_PROCPU_C0 is configured to 0x2. (R/W)

Register 9.33. RTC_CNTL_STORE4_REG (0x00AC)

RT
C_
CN
TL
_S
CR
AT
CH
4

0

31 0

Reset

RTC_CNTL_SCRATCH4 Reservation register 4. (R/W)

Espressif Systems 193
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.34. RTC_CNTL_STORE5_REG (0x00B0)

RT
C_
CN
TL
_S
CR
AT
CH
5

0

31 0

Reset

RTC_CNTL_SCRATCH5 Reservation register 5. (R/W)

Register 9.35. RTC_CNTL_STORE6_REG (0x00B4)

RT
C_
CN
TL
_S
CR
AT
CH
6

0

31 0

Reset

RTC_CNTL_SCRATCH6 Reservation register 6. (R/W)

Register 9.36. RTC_CNTL_STORE7_REG (0x00B8)

RT
C_
CN
TL
_S
CR
AT
CH
7

0

31 0

Reset

RTC_CNTL_SCRATCH7 Reservation register 7. (R/W)

Espressif Systems 194
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.37. RTC_CNTL_LOW_POWER_ST_REG (0x00BC)

(re
se
rve
d)

0 0 0 0

31 28

RT
C_
CN
TL
_M
AI
N_
ST
AT
E_
IN
_ID
EL

0

27

(re
se
rve
d)

0 0 0 0 0 0 0

26 20

RT
C_
CN
TL
_R
DY
_F
OR
_W
AK
EU
P

0

19

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0

Reset

RTC_CNTL_RDY_FOR_WAKEUP Indicates the RTC is ready to be triggered by any wakeup source.

(RO)

RTC_CNTL_MAIN_STATE_IN_IDLE Indicates the RTC state.

• 0: the chip can be either

– in sleep modes.

– entering sleep modes. In this case, wait until RTC_CNTL_RDY_FOR_WAKEUP bit is set,

then you can wake up the chip.

– exiting sleep mode. In this case, RTC_CNTL_MAIN_STATE_IN_IDLE will eventually be-

come 1.

• 1: the chip is not in sleep modes (i.e. running normally).

Register 9.38. RTC_CNTL_PAD_HOLD_REG (0x00C4)

(re
se
rve
d)

0 0

31 6

RT
C_
CN
TL
_G
PI
O_
PI
N5
_H
OL
D

0

5

RT
C_
CN
TL
_G
PI
O_
PI
N4
_H
OL
D

0

4

RT
C_
CN
TL
_G
PI
O_
PI
N3
_H
OL
D

0

3

RT
C_
CN
TL
_G
PI
O_
PI
N2
_H
OL
D

0

2

RT
C_
CN
TL
_G
PI
O_
PI
N1
_H
OL
D

0

1

RT
C_
CN
TL
_G
PI
O_
PI
N0
_H
OL
D

0

0

Reset

RTC_CNTL_GPIO_PIN0_HOLD Sets the GPIO 0 to the holding state. (R/W)

RTC_CNTL_GPIO_PIN1_HOLD Sets the GPIO 1 to the holding state. (R/W)

RTC_CNTL_GPIO_PIN2_HOLD Sets the GPIO 2 to the holding state. (R/W)

RTC_CNTL_GPIO_PIN3_HOLD Sets the GPIO 3 to the holding state. (R/W)

RTC_CNTL_GPIO_PIN4_HOLD Sets the GPIO 4 to the holding state. (R/W)

RTC_CNTL_GPIO_PIN5_HOLD Sets the GPIO 5 to the holding state. (R/W)

Espressif Systems 195
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.39. RTC_CNTL_DIG_PAD_HOLD_REG (0x00C8)

RT
C_
CN
TL
_D
IG
_P
AD
_H
OL
D

0

31 0

Reset

RTC_CNTL_DIG_PAD_HOLD Set GPIO 6 to GPIO 20 to the holding state. (See bitmap to locate any

GPIO). (R/W)

Espressif Systems 196
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.40. RTC_CNTL_BROWN_OUT_REG (0x00CC)

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
DE
T

0

31

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
EN
A

1

30

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
CN
T_
CL
R

0

29

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
AN
A_
RS
T_
EN

0

28

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
RS
T_
SE
L

0

27

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
RS
T_
EN
A

0

26

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
RS
T_
W
AI
T

0x3ff

25 16

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
PD
_R
F_
EN
A

0

15

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
CL
OS
E_
FL
AS
H_
EN
A

0

14

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
IN
T_
W
AI
T

0x1

13 4

(re
se
rve
d)

0 0 0 0

3 0

Reset

RTC_CNTL_BROWN_OUT_INT_WAIT Configures the waiting cycles before sending an interrupt.

(R/W)

RTC_CNTL_BROWN_OUT_CLOSE_FLASH_ENA Write 1 to enable PD the flash when a brownout

happens. (R/W)

RTC_CNTL_BROWN_OUT_PD_RF_ENA Write 1 to enable PD the RF circuits when a brownout hap-

pens. (R/W)

RTC_CNTL_BROWN_OUT_RST_WAIT Configures the waiting cycles before the reset after a brown-

out. (R/W)

RTC_CNTL_BROWN_OUT_RST_ENA Write 1 to reset brown-out. (R/W)

RTC_CNTL_BROWN_OUT_RST_SEL Configures the reset type when a brownout happens in

mode0.

0x0: system reset

0x1: chip reset

(R/W)

RTC_CNTL_BROWN_OUT_ANA_RST_EN Write 1 to enable brownout detection mode1. (R/W)

RTC_CNTL_BROWN_OUT_CNT_CLR Write 1 to clear the brownout counter. (R/W)

RTC_CNTL_BROWN_OUT_ENA Write 1 to enable brownout detection mode0. (R/W)

RTC_CNTL_BROWN_OUT_DET Represents the status of the brownout signal. (R/W)

Espressif Systems 197
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.41. RTC_CNTL_TIME_LOW1_REG (0x00D0)

RT
C_
CN
TL
_T
IM
ER
_V
AL
UE
1_
LO
W

0x000000

31 0

Reset

RTC_CNTL_TIMER_VALUE1_LOW Represents the lower 32 bits of RTC timer 1. (R/W)

Register 9.42. RTC_CNTL_TIME_HIGH1_REG (0x00D4)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

RT
C_
CN
TL
_T
IM
ER
_V
AL
UE
1_
HI
GH

0x00

15 0

Reset

RTC_CNTL_TIMER_VALUE1_HIGH Represents the higher 16 bits of RTC timer 1. (R/W)

Register 9.43. RTC_CNTL_USB_CONF_REG (0x00D8)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

RT
C_
CN
TL
_IO
_M
UX
_R
ES
ET
_D
IS
AB
LE

0

18

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0

Reset

RTC_CNTL_IO_MUX_RESET_DISABLE Write 1 to disable io_mux reset. (R/W)

Espressif Systems 198
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.44. RTC_CNTL_SLP_REJECT_CAUSE_REG (0x00DC)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

RT
C_
CN
TL
_R
EJ
EC
T_
CA
US
E

0

17 0

Reset

RTC_CNTL_REJECT_CAUSE Represents the reject-to-sleep cause. (R/W)

Register 9.45. RTC_CNTL_OPTION1_REG (0x00E0)

(re
se
rve
d)

0 0

31 1

RT
C_
CN
TL
_F
OR
CE
_D
OW

NL
OA
D_
BO
OT

0

0

Reset

RTC_CNTL_FORCE_DOWNLOAD_BOOT Write 1 to force the chip to boot from the download

mode. (R/W)

Register 9.46. RTC_CNTL_SLP_WAKEUP_CAUSE_REG (0x00E4)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

RT
C_
CN
TL
_W
AK
EU
P_
CA
US
E

0

16 0

Reset

RTC_CNTL_WAKEUP_CAUSE Represents the wakeup cause. (R/W)

Espressif Systems 199
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.47. RTC_CNTL_CNTL_GPIO_WAKEUP_REG (0x00FC)

RT
C_
CN
TL
_G
PI
O_
PI
N0
_W
AK
EU
P_
EN
AB
LE

0

31

RT
C_
CN
TL
_G
PI
O_
PI
N1
_W
AK
EU
P_
EN
AB
LE

0

30

RT
C_
CN
TL
_G
PI
O_
PI
N2
_W
AK
EU
P_
EN
AB
LE

0

29

RT
C_
CN
TL
_G
PI
O_
PI
N3
_W
AK
EU
P_
EN
AB
LE

0

28

RT
C_
CN
TL
_G
PI
O_
PI
N4
_W
AK
EU
P_
EN
AB
LE

0

27

RT
C_
CN
TL
_G
PI
O_
PI
N5
_W
AK
EU
P_
EN
AB
LE

0

26

RT
C_
CN
TL
_G
PI
O_
PI
N0
_IN
T_
TY
PE

0

25 23

RT
C_
CN
TL
_G
PI
O_
PI
N1
_IN
T_
TY
PE

0

22 20

RT
C_
CN
TL
_G
PI
O_
PI
N2
_IN
T_
TY
PE

0

19 17

RT
C_
CN
TL
_G
PI
O_
PI
N3
_IN
T_
TY
PE

0

16 14

RT
C_
CN
TL
_G
PI
O_
PI
N4
_IN
T_
TY
PE

0

13 11

RT
C_
CN
TL
_G
PI
O_
PI
N5
_IN
T_
TY
PE

0

10 8

RT
C_
CN
TL
_G
PI
O_
PI
N_
CL
K_
GA
TE

0

7

RT
C_
CN
TL
_G
PI
O_
W
AK
EU
P_
ST
AT
US
_C
LR

0

6

RT
C_
CN
TL
_G
PI
O_
W
AK
EU
P_
ST
AT
US

0

5 0

Reset

RTC_CNTL_GPIO_WAKEUP_STATUS Write 1 to set the RTC GPIO wakeup flag. (R/W)

RTC_CNTL_GPIO_WAKEUP_STATUS_CLR Write 1 to clear the RTC GPIO flag. (R/W)

RTC_CNTL_GPIO_PIN_CLK_GATE Write 1 to enable the RTC GPIO clock gating. (R/W)

RTC_CNTL_GPIO_PIN5_INT_TYPE Configures GPIO 5 wakeup type. (R/W)

RTC_CNTL_GPIO_PIN4_INT_TYPE Configures GPIO 4 wakeup type. (R/W)

RTC_CNTL_GPIO_PIN3_INT_TYPE Configures GPIO 3 wakeup type. (R/W)

RTC_CNTL_GPIO_PIN2_INT_TYPE Configures GPIO 2 wakeup type. (R/W)

RTC_CNTL_GPIO_PIN1_INT_TYPE Configures GPIO 1 wakeup type. (R/W)

RTC_CNTL_GPIO_PIN0_INT_TYPE Configures GPIO 0 wakeup type. (R/W)

RTC_CNTL_GPIO_PIN5_WAKEUP_ENABLE Write 1 to enable wakeup from RTC GPIO 5. (R/W)

RTC_CNTL_GPIO_PIN4_WAKEUP_ENABLE Write 1 to enable wakeup from RTC GPIO 4. (R/W)

RTC_CNTL_GPIO_PIN3_WAKEUP_ENABLE Write 1 to enable wakeup from RTC GPIO 3. (R/W)

RTC_CNTL_GPIO_PIN2_WAKEUP_ENABLE Write 1 to enable wakeup from RTC GPIO 2. (R/W)

RTC_CNTL_GPIO_PIN1_WAKEUP_ENABLE Write 1 to enable wakeup from RTC GPIO 1. (R/W)

RTC_CNTL_GPIO_PIN0_WAKEUP_ENABLE Write 1 to enable wakeup from RTC GPIO 0. (R/W)

Espressif Systems 200
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.48. RTC_CNTL_CNTL_SENSOR_CTRL_REG (0x0108)

RT
C_
CN
TL
_F
OR
CE
_X
PD
_S
AR

0

31 30

(re
se
rve
d)

0 0

29 0

Reset

RTC_CNTL_FORCE_XPD_SAR Set this field to FPU SAR ADC. (R/W)

Register 9.49. RTC_CNTL_RESET_STATE_REG (0x0030)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

RT
C_
CN
TL
_D
RE
SE
T_
M
AS
K_
PR
OC
PU

0

20

RT
C_
CN
TL
_O
CD
_H
AL
T_
ON
_R
ES
ET
_P
RO
CP
U

0

19

(re
se
rve
d)

0 0 0 0 0

18 14

(re
se
rve
d)

1

13

(re
se
rve
d)

0 0 0 0 0 0 0

12 6

RT
C_
CN
TL
_R
ES
ET
_C
AU
SE
_P
RO
CP
U

0

5 0

Reset

RTC_CNTL_RESET_CAUSE_PROCPU Represents the CPU reset cause. (R/W)

RTC_CNTL_OCD_HALT_ON_RESET_PROCPU Write 1 to send CPU into halt state upon CPU reset.

(R/W)

RTC_CNTL_DRESET_MASK_PROCPU Write 1 to bybass D-reset. (R/W)

Espressif Systems 201
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.50. RTC_CNTL_INT_ENA_RTC_REG (0x0038)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

RT
C_
CN
TL
_B
BP
LL
_C
AL
_IN
T_
EN
A

0

20

(re
se
rve
d)

0 0 0 0

19 16

RT
C_
CN
TL
_S
W
D_
IN
T_
EN
A

0

15

(re
se
rve
d)

0 0 0 0

14 11

RT
C_
CN
TL
_M
AI
N_
TIM

ER
_IN
T_
EN
A

0

10

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
IN
T_
EN
A

0

9

(re
se
rve
d)

0 0 0 0 0

8 4

RT
C_
CN
TL
_W
DT
_IN
T_
EN
A

0

3

(re
se
rve
d)

0

2

RT
C_
CN
TL
_S
LP
_R
EJ
EC
T_
IN
T_
EN
A

0

1

RT
C_
CN
TL
_S
LP
_W
AK
EU
P_
IN
T_
EN
A

0

0

Reset

RTC_CNTL_SLP_WAKEUP_INT_ENA Write 1 to enable interrupt when chip wakes up from sleep.

(R/W)

RTC_CNTL_SLP_REJECT_INT_ENA Write 1 to enable interrupt when chip rejects to go to sleep.

(R/W)

RTC_CNTL_WDT_INT_ENA Write 1 to enable RTC WDT interrupt. (R/W)

RTC_CNTL_BROWN_OUT_INT_ENA Write 1 to enable the brownout interrupt. (R/W)

RTC_CNTL_MAIN_TIMER_INT_ENA Write 1 to enable the RTC timer interrupt. (R/W)

RTC_CNTL_SWD_INT_ENA Write 1 to enable the super watchdog interrupt. (R/W)

RTC_CNTL_BBPLL_CAL_INT_ENA Write 1 to enable interrupt upon the ending of a BB_PLL call.

(R/W)

Espressif Systems 202
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.51. RTC_CNTL_INT_RAW_RTC_REG (0x003C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

RT
C_
CN
TL
_B
BP
LL
_C
AL
_IN
T_
RA
W

0

20

(re
se
rve
d)

0 0 0 0

19 16

RT
C_
CN
TL
_S
W
D_
IN
T_
RA
W

0

15

(re
se
rve
d)

0 0 0 0

14 11

RT
C_
CN
TL
_M
AI
N_
TIM

ER
_IN
T_
RA
W

0

10

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
IN
T_
RA
W

0

9

(re
se
rve
d)

0 0 0 0 0

8 4

RT
C_
CN
TL
_W
DT
_IN
T_
RA
W

0

3

(re
se
rve
d)

0

2

RT
C_
CN
TL
_S
LP
_R
EJ
EC
T_
IN
T_
RA
W

0

1

RT
C_
CN
TL
_S
LP
_W
AK
EU
P_
IN
T_
RA
W

0

0

Reset

RTC_CNTL_SLP_WAKEUP_INT_RAW Represents the raw interrupt triggered when the chip wakes

up from sleep. (R/W)

RTC_CNTL_SLP_REJECT_INT_RAW Represents the raw interrupt triggered when the chip rejects

to go to sleep. (R/W)

RTC_CNTL_WDT_INT_RAW Represents the raw watchdog interrupt. (R/W)

RTC_CNTL_BROWN_OUT_INT_RAW Represents the raw brownout interrupt. (R/W)

RTC_CNTL_MAIN_TIMER_INT_RAW Represents the raw RTC main timer interrupt. (R/W)

RTC_CNTL_SWD_INT_RAW Represents the raw super watchdog interrupt. (R/W)

RTC_CNTL_BBPLL_CAL_INT_RAW Represents the raw interrupt upon the ending of a BB_PLL call.

(R/W)

Espressif Systems 203
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.52. RTC_CNTL_INT_ST_RTC_REG (0x0040)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

RT
C_
CN
TL
_B
BP
LL
_C
AL
_IN
T_
ST

0

20

(re
se
rve
d)

0 0 0 0

19 16

RT
C_
CN
TL
_S
W
D_
IN
T_
ST

0

15

(re
se
rve
d)

0 0 0 0

14 11

RT
C_
CN
TL
_M
AI
N_
TIM

ER
_IN
T_
ST

0

10

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
IN
T_
ST

0

9

(re
se
rve
d)

0 0 0 0 0

8 4

RT
C_
CN
TL
_W
DT
_IN
T_
ST

0

3

(re
se
rve
d)

0

2

RT
C_
CN
TL
_S
LP
_R
EJ
EC
T_
IN
T_
ST

0

1

RT
C_
CN
TL
_S
LP
_W
AK
EU
P_
IN
T_
ST

0

0

Reset

RTC_CNTL_SLP_WAKEUP_INT_ST Represents the status of the interrupt triggered when the chip

wakes up from sleep. (R/W)

RTC_CNTL_SLP_REJECT_INT_ST Represents the status of the interrupt triggered when the chip

rejects to go to sleep. (R/W)

RTC_CNTL_WDT_INT_ST Represents the status of the RTC watchdog interrupt. (R/W)

RTC_CNTL_BROWN_OUT_INT_ST Represents the status of the brownout interrupt. (R/W)

RTC_CNTL_MAIN_TIMER_INT_ST Represents the status of the RTC main timer interrupt. (R/W)

RTC_CNTL_SWD_INT_ST Represents the status of the super watchdog interrupt. (R/W)

RTC_CNTL_BBPLL_CAL_INT_ST Represents the status of the interrupt triggered upon the ending

of a BB_PLL call. (R/W)

Espressif Systems 204
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.53. RTC_CNTL_INT_CLR_RTC_REG (0x0044)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

RT
C_
CN
TL
_B
BP
LL
_C
AL
_IN
T_
CL
R

0

20

(re
se
rve
d)

0 0 0 0

19 16

RT
C_
CN
TL
_S
W
D_
IN
T_
CL
R

0

15

(re
se
rve
d)

0 0 0 0

14 11

RT
C_
CN
TL
_M
AI
N_
TIM

ER
_IN
T_
CL
R

0

10

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
IN
T_
CL
R

0

9

(re
se
rve
d)

0 0 0 0 0

8 4

RT
C_
CN
TL
_W
DT
_IN
T_
CL
R

0

3

(re
se
rve
d)

0

2

RT
C_
CN
TL
_S
LP
_R
EJ
EC
T_
IN
T_
CL
R

0

1

RT
C_
CN
TL
_S
LP
_W
AK
EU
P_
IN
T_
CL
R

0

0

Reset

RTC_CNTL_SLP_WAKEUP_INT_CLR Write 1 to clear the interrupt triggered when the chip wakes

up from sleep. (R/W)

RTC_CNTL_SLP_REJECT_INT_CLR Write 1 to clear the interrupt triggered when the chip rejects to

go to sleep. (R/W)

RTC_CNTL_WDT_INT_CLR Write 1 to clear the RTC watchdog interrupt. (R/W)

RTC_CNTL_BROWN_OUT_INT_CLR Write 1 to clear the brownout interrupt. (R/W)

RTC_CNTL_MAIN_TIMER_INT_CLR Write 1 to clear the RTC main timer interrupt. (R/W)

RTC_CNTL_SWD_INT_CLR Write 1 to clear the super watch dog interrupt state. (R/W)

RTC_CNTL_BBPLL_CAL_INT_CLR Write 1 to clear the interrupt triggered upon the ending of a

BB_PLL call. (R/W)

Espressif Systems 205
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.54. RTC_CNTL_INT_ENA_RTC_W1TS_REG (0x00EC)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

RT
C_
CN
TL
_B
BP
LL
_C
AL
_IN
T_
EN
A_
W
1T
S

0

20

(re
se
rve
d)

0 0 0 0

19 16

RT
C_
CN
TL
_S
W
D_
IN
T_
EN
A_
W
1T
S

0

15

(re
se
rve
d)

0 0 0 0

14 11

RT
C_
CN
TL
_M
AI
N_
TIM

ER
_IN
T_
EN
A_
W
1T
S

0

10

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
IN
T_
EN
A_
W
1T
S

0

9

(re
se
rve
d)

0 0 0 0 0

8 4

RT
C_
CN
TL
_W
DT
_IN
T_
EN
A_
W
1T
S

0

3

(re
se
rve
d)

0

2

RT
C_
CN
TL
_S
LP
_R
EJ
EC
T_
IN
T_
EN
A_
W
1T
S

0

1

RT
C_
CN
TL
_S
LP
_W
AK
EU
P_
IN
T_
EN
A_
W
1T
S

0

0

Reset

RTC_CNTL_SLP_WAKEUP_INT_ENA_W1TS Write 1 to enable interrupt when the chip wakes up

from sleep. If the value 1 is written to this bit, the RTC_CNTL_SLP_WAKEUP_INT_ENA field will

be set to 1. (R/W)

RTC_CNTL_SLP_REJECT_INT_ENA_W1TS Write 1 to enable interrupt when the chip rejects to go

to sleep. If the value 1 is written to this bit, the RTC_CNTL_SLP_REJECT_INT_ENA field will be

set to 1. (R/W)

RTC_CNTL_WDT_INT_ENA_W1TS Write 1 to enable the RTC watchdog interrupt. If the value 1 is

written to this bit, the RTC_CNTL_WDT_INT_ENA field will be set to 1. (R/W)

RTC_CNTL_BROWN_OUT_INT_ENA_W1TS Write 1 to enable the brownout interrupt. If the value

1 is written to this bit, the RTC_CNTL_BROWN_OUT_INT_ENA field will be set to 1. (R/W)

RTC_CNTL_MAIN_TIMER_INT_ENA_W1TS Write 1 to enable the RTC main timer interrupt. If the

value 1 is written to this bit, the RTC_CNTL_MAIN_TIMER_INT_ENA field will be set to 1. (R/W)

RTC_CNTL_SWD_INT_ENA_W1TS Write 1 to enable the super watchdog interrupt. If the value 1 is

written to this bit, the RTC_CNTL_SWD_INT_ENA field will be set to 1. (R/W)

RTC_CNTL_BBPLL_CAL_INT_ENA_W1TS Write 1 to enable interrupt upon the ending of a BB_PLL

call. If the value 1 is written to this bit, the RTC_CNTL_BBPLL_CAL_INT_ENA field will be set to 1.

(R/W)

Espressif Systems 206
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

9 Low-power Management (RTC_CNTL) GoBack

Register 9.55. RTC_CNTL_INT_ENA_RTC_W1TC_REG (0x00F0)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

RT
C_
CN
TL
_B
BP
LL
_C
AL
_IN
T_
EN
A_
W
1T
C

0

20

(re
se
rve
d)

0 0 0 0

19 16

RT
C_
CN
TL
_S
W
D_
IN
T_
EN
A_
W
1T
C

0

15

(re
se
rve
d)

0 0 0 0

14 11

RT
C_
CN
TL
_M
AI
N_
TIM

ER
_IN
T_
EN
A_
W
1T
C

0

10

RT
C_
CN
TL
_B
RO
W
N_
OU
T_
IN
T_
EN
A_
W
1T
C

0

9

(re
se
rve
d)

0 0 0 0 0

8 4

RT
C_
CN
TL
_W
DT
_IN
T_
EN
A_
W
1T
C

0

3

(re
se
rve
d)

0

2

RT
C_
CN
TL
_S
LP
_R
EJ
EC
T_
IN
T_
EN
A_
W
1T
C

0

1

RT
C_
CN
TL
_S
LP
_W
AK
EU
P_
IN
T_
EN
A_
W
1T
C

0

0

Reset

RTC_CNTL_SLP_WAKEUP_INT_ENA_W1TC Write 1 to disable interrupt when the chip wakes up

from sleep. If the value 1 is written to this bit, the RTC_CNTL_SLP_WAKEUP_INT_CLR field will

be cleared. (R/W)

RTC_CNTL_SLP_REJECT_INT_ENA_W1TC Write 1 to disable interrupt when the chip rejects to go

to sleep. If the value 1 is written to this bit, the RTC_CNTL_SLP_REJECT_INT_CLR field will be

cleared. (R/W)

RTC_CNTL_WDT_INT_ENA_W1TC Write 1 to disable the RTC watchdog interrupt. If the value 1 is

written to this bit, the RTC_CNTL_WDT_INT_CLR field will be cleared. (R/W)

RTC_CNTL_BROWN_OUT_INT_ENA_W1TC Write 1 to disable the brownout interrupt. If the value

1 is written to this bit, the RTC_CNTL_BROWN_OUT_INT_CLR field will be cleared. (R/W)

RTC_CNTL_MAIN_TIMER_INT_ENA_W1TC Write 1 to disable the RTC timer interrupt. If the value

1 is written to this bit, the RTC_CNTL_MAIN_TIMER_INT_CLR field will be cleared. (R/W)

RTC_CNTL_SWD_INT_ENA_W1TC Write 1 to disable the super watchdog interrupt enable bit. If the

value 1 is written to this bit, the RTC_CNTL_SWD_INT_CLR field will be cleared. (R/W)

RTC_CNTL_BBPLL_CAL_INT_ENA_W1TC Write 1 to disable the interrupt upon the ending of a

BB_PLL call. If the value 1 is written to this bit, the RTC_CNTL_BBPLL_CAL_INT_CLR field will be

cleared. (R/W)

Register 9.56. RTC_CNTL_FIB_SEL_REG (0x00F8)

(re
se
rve
d)

0 0

31 3

RT
C_
CN
TL
_R
TC
_F
IB
_S
EL

7

2 0

Reset

RTC_CNTL_RTC_FIB_SEL Configures the brownout detector. (R/W)

Espressif Systems 207
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

10 System Timer (SYSTIMER)

10.1 Overview

ESP8684 provides a 52-bit timer, which can be used to generate tick interrupts for operating system, or be used

as a general timer to generate periodic interrupts or one-time interrupts. With the help of RTC timer, system timer

can be kept up to date after Light-sleep or Deep-sleep.

The timer consists of two counters UNIT0 and UNIT1. The counter values can be monitored by three

comparators COMP0, COMP1 and COMP2. See the timer block diagram on Figure 10-1.

Timer Comparator0
(COMP0)

Timer Comparator1
(COMP1)

Timer Comparator2
(COMP2)

Timer Counter0
(UNIT0)

Timer Counter1
(UNIT1)

Figure 10­1. System Timer Structure

10.2 Features

The system timer has the following features:

• Two 52-bit counters and three 52-bit comparators

• Software accessing registers clocked by APB_CLK

• 40 MHz XTAL_CLK as the clock source of CNT_CLK

• 52-bit alarm values (t) and 26-bit alarm periods (δt)

• Two modes to generate alarms:

– Target mode: only a one-time alarm is generated based on the alarm value (t)

– Period mode: periodic alarms are generated based on the alarm period (δt)

• Three comparators generating three independent interrupts based on configured alarm value (t) or alarm

period (δt)

• Able to load back sleep time recorded by RTC timer via software after Deep-sleep or Light-sleep

• Able to stall or continue running when CPU stalls or enters on-chip-debugging mode

• CNT_CLK used for counting, with an average frequency of 16 MHz in two counting cycles

Espressif Systems 208
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

10.3 Clock Source Selection

The counters and comparators are driven using XTAL_CLK. After scaled by a fractional divider, a fXTAL_CLK/3

clock is generated in one count cycle and a fXTAL_CLK/2 clock in another count cycle. The average clock

frequency is fXTAL_CLK/2.5, which is 16 MHz, i.e. the CNT_CLK in Figure 10-2. The timer counting is

incremented by 1/16 µs on each CNT_CLK cycle.

Software operation such as configuring registers is clocked by APB_CLK. For more information about APB_CLK,

see Chapter 6 Reset and Clock.

The following two bits of system registers are also used to control the system timer:

• SYSTEM_SYSTIMER_CLK_EN in register SYSTEM_PERIP_CLK_EN0_REG: enable APB_CLK signal to

system timer.

• SYSTEM_SYSTIMER_RST in register SYSTEM_PERIP_RST_EN0_REG: reset system timer.

Note that if the timer is reset, its registers will be restored to their default values. For more information, please

refer to Table Peripheral Clock Gating and Reset in Chapter 13 System Registers (SYSTEM).

10.4 Functional Description

Figure 10­2. System Timer Alarm Generation

Figure 10-2 shows the procedure to generate alarm in system timer. In this process, one timer counter and one

timer comparator are used. An alarm interrupt will be generated accordingly based on the comparison result in

comparator.

10.4.1 Counter

The system timer has two 52-bit timer counters, shown as UNITn (n = 0 or 1). Their counting clock source is a 16

MHz clock, i.e. CNT_CLK. Whether UNITn works or not is controlled by two bits in register

SYSTIMER_CONF_REG:

• SYSTIMER_TIMER_UNITn_WORK_EN: set this bit to enable the counter UNITn in system timer.

• SYSTIMER_TIMER_UNITn_CORE0_STALL_EN: if this bit is set, the counter UNITn stops when CPU is

stalled. The counter continues its counting after the CPU resumes.

The configuration of the two bits to control the counter UNITn is shown below, assuming that CPU is

stalled.

Espressif Systems 209
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Table 10­1. UNITn Configuration Bits

SYSTIMER_TIMER_ SYSTIMER_TIMER_ Counter

UNITn_WORK_EN UNITn_CORE0_STALL_EN UNITn

0 x * Not at work

1 1
Stop counting, but will continue its

counting after the CPU resumes.

1 0 Keep counting

* x: Don’t-care.

When the counter UNITn is at work, the count value is incremented on each counting cycle. When the counter

UNITn is stopped, the count value stops increasing and keeps unchanged.

The lower 32 and higher 20 bits of initial count value are loaded from the registers

SYSTIMER_TIMER_UNITn_LOAD_LO and SYSTIMER_TIMER_UNITn_LOAD_HI. Writing 1 to the bit

SYSTIMER_TIMER_UNITn_LOAD will trigger a reload event, and the current count value will be changed

immediately. If UNITn is at work, the counter will continue to count up from the new reloaded value.

Writing 1 to SYSTIMER_TIMER_UNITn_UPDATE will trigger an update event. The lower 32 and higher 20 bits of

current count value will be locked into the registers SYSTIMER_TIMER_UNITn_VALUE_LO and

SYSTIMER_TIMER_UNITn_VALUE_HI, and then SYSTIMER_TIMER_UNITn_VALUE_VALID is asserted. Before

the next update event, the values of SYSTIMER_TIMER_UNITn_VALUE_LO and

SYSTIMER_TIMER_UNITn_VALUE_HI remain unchanged.

10.4.2 Comparator and Alarm

The system timer has three 52-bit comparators, shown as COMPx (x = 0, 1, or 2). The comparators can

generate independent interrupts based on different alarm values (t) or alarm periods (δt).

Configure SYSTIMER_TARGETx_PERIOD_MODE to choose from the two alarm modes for each COMPx:

• 1: period mode

• 0: target mode

In period mode, the alarm period (δt) is provided by the register SYSTIMER_TARGETx_PERIOD. Assuming that

current count value is t1, when it reaches (t1 + δt), an alarm interrupt will be generated. Another alarm interrupt

also will be generated when the counter value reaches (t1 + 2*δt). By such way, periodic alarms are

generated.

In target mode, the lower 32 bits and higher 20 bits of the alarm value (t) are provided by

SYSTIMER_TIMER_TARGET

x_LO and SYSTIMER_TIMER_TARGETx_HI. Assuming that current count value is t2 (t2 <= t), an alarm interrupt

will be generated when the count value reaches the alarm value (t). Unlike in period mode, only one alarm

interrupt is generated in target mode.

SYSTIMER_TARGETx_TIMER_UNIT_SEL is used to choose the count value from which timer counter to be

compared for alarm:

• 1: use the count value from UNIT1

• 0: use the count value from UNIT0

Espressif Systems 210
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Finally, set SYSTIMER_TARGETx_WORK_EN and COMPx starts to compare the count value with the alarm value

(t) in target mode or with the alarm period (t1 + n*δt) in period mode.

An alarm is generated when the count value equals to the alarm value (t) in target mode or to the start value +

n*alarm period δt (n = 1,2,3...) in period mode. But if the alarm value (t) set in registers is less than current count

value, i.e. the target has already passed, or current count value is larger than the target value (t) within a range (0

~ 251 -1), an alarm interrupt also is generated immediately. The relationship between current count value tc, the

alarm value tt and alarm trigger point is shown below.

Table 10­2. Trigger Point

Relationship Between tc and tt Trigger Point

tc- tt <= 0 tc = tt, an alarm is triggered.

0 <= tc - tt < 251 - 1

(tc < 251 and tt < 251,

or tc >= 251 and tt >= 251)

An alarm is triggered immediately.

tc - tt >= 251 - 1

tc overflows after counting to its maximum value

52’hfffffffffffff, and then starts counting up from 0.

When its value reaches tt, an alarm is triggered.

10.4.3 Synchronization Operation

The clock (APB_CLK) used in software operation is not the same one as the timer counters and comparators

working on CNT_CLK. Synchronization is needed for some configuration registers. A complete synchronization

action takes two steps:

1. Software writes suitable values to configuration fields, see the first column in Table 10-3.

2. Software writes 1 to corresponding bits to start synchronization, see the second column in Table 10-3.

Table 10­3. Synchronization Operation

Configuration Fields Synchronization Enable Bit

SYSTIMER_TIMER_UNITn_LOAD_LO

SYSTIMER_TIMER_UNITn_LOAD_HI
SYSTIMER_TIMER_UNITn_LOAD

SYSTIMER_TARGETx_PERIOD

SYSTIMER_TIMER_TARGETx_HI

SYSTIMER_TIMER_TARGETx_LO

SYSTIMER_TIMER_COMPx_LOAD

10.4.4 Interrupt

Each comparator has one level-type alarm interrupt, named as SYSTIMER_TARGETx_INT. Interrupts signal is

asserted high when the comparator starts to alarm. Until the interrupt is cleared by software, it remains high. To

enable interrupts, set the bit SYSTIMER_TARGETx_INT_ENA.

10.5 Programming Procedure

10.5.1 Read Current Count Value

1. Set SYSTIMER_TIMER_UNITn_UPDATE to update the current count value into SYSTIMER_TIMER_UNITn_

Espressif Systems 211
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

VALUE_HI and SYSTIMER_TIMER_UNITn_VALUE_LO.

2. Poll the reading of SYSTIMER_TIMER_UNITn_VALUE_VALID, till it’s 1, which means user now can read the

count value from SYSTIMER_TIMER_UNITn_VALUE_HI and SYSTIMER_TIMER_UNITn_VALUE_LO.

3. Read the lower 32 bits and higher 20 bits from SYSTIMER_TIMER_UNITn_VALUE_LO and

SYSTIMER_TIMER_UNITn_VALUE_HI.

10.5.2 Configure One­Time Alarm in Target Mode

1. Set SYSTIMER_TARGETx_TIMER_UNIT_SEL to select the counter (UNIT0 or UNIT1) used for COMPx.

2. Read current count value, see Section 10.5.1. This value will be used to calculate the alarm value (t) in Step

4.

3. Clear SYSTIMER_TARGETx_PERIOD_MODE to enable target mode.

4. Set an alarm value (t), and fill its lower 32 bits to SYSTIMER_TIMER_TARGETx_LO, and the higher 20 bits

to SYSTIMER_TIMER_TARGETx_HI.

5. Set SYSTIMER_TIMER_COMPx_LOAD to synchronize the alarm value (t) to COMPx, i.e. load the alarm

value (t) to the COMPx.

6. Set SYSTIMER_TARGETx_WORK_EN to enable the selected COMPx. COMPx starts comparing the count

value with the alarm value (t).

7. Set SYSTIMER_TARGETx_INT_ENA to enable timer interrupt. When Unitn counts to the alarm value (t), a

SYSTIMER_TARGETx_INT interrupt is triggered.

10.5.3 Configure Periodic Alarms in Period Mode

1. Set SYSTIMER_TARGETx_TIMER_UNIT_SEL to select the counter (UNIT0 or UNIT1) used for COMPx.

2. Set an alarm period (δt), and fill it to SYSTIMER_TARGETx_PERIOD.

3. Set SYSTIMER_TIMER_COMPx_LOAD to synchronize the alarm period (δt) to COMPx, i.e. load the alarm

period (δt) to COMPx.

4. Set SYSTIMER_TARGETx_PERIOD_MODE to configure COMPx into period mode.

5. Set SYSTIMER_TARGETx_WORK_EN to enable the selected COMPx. COMPx starts comparing the count

value with the sum of start value + n*δt (n = 1, 2, 3...).

6. Set SYSTIMER_TARGETx_INT_ENA to enable timer interrupt. A SYSTIMER_TARGETx_INT interrupt is

triggered when Unitn counts to start value + n*δt (n = 1, 2, 3...) set in Step 2.

10.5.4 Update After Deep­sleep and Light­sleep

1. Configure RTC timer before the chip goes to Deep-sleep or Light-sleep, to record the exact sleep time. For

more information, see Chapter 9 Low-power Management (RTC_CNTL).

2. Read the sleep time from RTC timer when the chip is woken up from Deep-sleep or Light-sleep.

3. Read current count value of system timer, see Section 10.5.1.

Espressif Systems 212
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

4. Convert the time value recorded by RTC timer from the clock cycles based on RTC_SLOW_CLK to that

based on 16 MHz CNT_CLK. For example, if the frequency of RTC_SLOW_CLK is 32 KHz, the recorded

RTC timer value should be converted by multiplying by 500.

5. Add the converted RTC value to current count value of system timer:

• Fill the new value into SYSTIMER_TIMER_UNITn_LOAD_LO (low 32 bits) and

SYSTIMER_TIMER_UNITn_LOAD_HI (high 20 bits).

• Set SYSTIMER_TIMER_UNITn_LOAD to load new timer value into system timer. By such way, the

system timer is updated.

10.6 Register Summary

The addresses in this section are relative to system timer base address provided in Table 3-3 in Chapter 3 System

and Memory.

Name Description Address Access

Clock Control Register

SYSTIMER_CONF_REG Configure system timer clock 0x0000 R/W

UNIT0 Control and Configuration Registers

SYSTIMER_UNIT0_OP_REG Read UNIT0 value to registers 0x0004 varies

SYSTIMER_UNIT0_LOAD_HI_REG High 20 bits to be loaded to UNIT0 0x000C R/W

SYSTIMER_UNIT0_LOAD_LO_REG Low 32 bits to be loaded to UNIT0 0x0010 R/W

SYSTIMER_UNIT0_VALUE_HI_REG UNIT0 value, high 20 bits 0x0040 RO

SYSTIMER_UNIT0_VALUE_LO_REG UNIT0 value, low 32 bits 0x0044 RO

SYSTIMER_UNIT0_LOAD_REG UNIT0 synchronization register 0x005C WT

UNIT1 Control and Configuration Registers

SYSTIMER_UNIT1_OP_REG Read UNIT1 value to registers 0x0008 varies

SYSTIMER_UNIT1_LOAD_HI_REG High 20 bits to be loaded to UNIT1 0x0014 R/W

SYSTIMER_UNIT1_LOAD_LO_REG Low 32 bits to be loaded to UNIT1 0x0018 R/W

SYSTIMER_UNIT1_VALUE_HI_REG UNIT1 value, high 20 bits 0x0048 RO

SYSTIMER_UNIT1_VALUE_LO_REG UNIT1 value, low 32 bits 0x004C RO

SYSTIMER_UNIT1_LOAD_REG UNIT1 synchronization register 0x0060 WT

Comparator0 Control and Configuration Registers

SYSTIMER_TARGET0_HI_REG Alarm value to be loaded to COMP0, high 20

bits

0x001C R/W

SYSTIMER_TARGET0_LO_REG Alarm value to be loaded to COMP0, low 32

bits

0x0020 R/W

SYSTIMER_TARGET0_CONF_REG Configure COMP0 alarm mode 0x0034 R/W

SYSTIMER_COMP0_LOAD_REG COMP0 synchronization register 0x0050 WT

Comparator1 Control and Configuration Registers

SYSTIMER_TARGET1_HI_REG Alarm value to be loaded to COMP1, high 20

bits

0x0024 R/W

SYSTIMER_TARGET1_LO_REG Alarm value to be loaded to COMP1, low 32

bits

0x0028 R/W

SYSTIMER_TARGET1_CONF_REG Configure COMP1 alarm mode 0x0038 R/W

Espressif Systems 213
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Name Description Address Access

SYSTIMER_COMP1_LOAD_REG COMP1 synchronization register 0x0054 WT

Comparator2 Control and Configuration Registers

SYSTIMER_TARGET2_HI_REG Alarm value to be loaded to COMP2, high 20

bits

0x002C R/W

SYSTIMER_TARGET2_LO_REG Alarm value to be loaded to COMP2, low 32

bits

0x0030 R/W

SYSTIMER_TARGET2_CONF_REG Configure COMP2 alarm mode 0x003C R/W

SYSTIMER_COMP2_LOAD_REG COMP2 synchronization register 0x0058 WT

Interrupt Registers

SYSTIMER_INT_ENA_REG Interrupt enable register of system timer 0x0064 R/W

SYSTIMER_INT_RAW_REG Interrupt raw register of system timer 0x0068 R/WTC/SS

SYSTIMER_INT_CLR_REG Interrupt clear register of system timer 0x006C WT

SYSTIMER_INT_ST_REG Interrupt status register of system timer 0x0070 RO

Version Register

SYSTIMER_DATE_REG Version control register 0x00FC R/W

Espressif Systems 214
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

10.7 Registers

The addresses in this section are relative to system timer base address provided in Table 3-3 in Chapter 3 System

and Memory.

Register 10.1. SYSTIMER_CONF_REG (0x0000)

SY
ST
IM
ER
_C
LK
_E
N

0

31

SY
ST
IM
ER
_T
IM
ER
_U
NI
T0
_W
OR
K_
EN

1

30

SY
ST
IM
ER
_T
IM
ER
_U
NI
T1
_W
OR
K_
EN

0

29

SY
ST
IM
ER
_T
IM
ER
_U
NI
T0
_C
OR
E0
_S
TA
LL
_E
N

0

28

(re
se
rve
d)

0

27

SY
ST
IM
ER
_T
IM
ER
_U
NI
T1
_C
OR
E0
_S
TA
LL
_E
N

1

26

(re
se
rve
d)

1

25

SY
ST
IM
ER
_T
AR
GE
T0
_W
OR
K_
EN

0

24

SY
ST
IM
ER
_T
AR
GE
T1
_W
OR
K_
EN

0

23

SY
ST
IM
ER
_T
AR
GE
T2
_W
OR
K_
EN

0

22

(re
se
rve
d)

0 0

21 0

Reset

SYSTIMER_TARGET2_WORK_EN COMP2 work enable bit. (R/W)

SYSTIMER_TARGET1_WORK_EN COMP1 work enable bit. (R/W)

SYSTIMER_TARGET0_WORK_EN COMP0 work enable bit. (R/W)

SYSTIMER_TIMER_UNIT1_CORE0_STALL_EN UNIT1 is stalled when CPU stalled. (R/W)

SYSTIMER_TIMER_UNIT0_CORE0_STALL_EN UNIT0 is stalled when CPU stalled. (R/W)

SYSTIMER_TIMER_UNIT1_WORK_EN UNIT1 work enable bit. (R/W)

SYSTIMER_TIMER_UNIT0_WORK_EN UNIT0 work enable bit. (R/W)

SYSTIMER_CLK_EN Register clock gating. 1: Register clock is always enabled for read and write

operations. 0: Only enable needed clock for register read or write operations. (R/W)

Espressif Systems 215
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.2. SYSTIMER_UNIT0_OP_REG (0x0004)

(re
se
rve
d)

0

31

SY
ST
IM
ER
_T
IM
ER
_U
NI
T0
_U
PD
AT
E

0

30

SY
ST
IM
ER
_T
IM
ER
_U
NI
T0
_V
AL
UE
_V
AL
ID

0

29

(re
se
rve
d)

0 0

28 0

Reset

SYSTIMER_TIMER_UNIT0_VALUE_VALID Timer value is synchronized and valid. (R/SS/WTC)

SYSTIMER_TIMER_UNIT0_UPDATE Update timer UNIT0, i.e. read the UNIT0 count value to SYS-

TIMER_TIMER_UNIT0_VALUE_HI and SYSTIMER_TIMER_UNIT0_VALUE_LO. (WT)

Register 10.3. SYSTIMER_UNIT0_LOAD_HI_REG (0x000C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

SY
ST
IM
ER
_T
IM
ER
_U
NI
T0
_L
OA
D_
HI

0

19 0

Reset

SYSTIMER_TIMER_UNIT0_LOAD_HI The value to be loaded to UNIT0, high 20 bits. (R/W)

Register 10.4. SYSTIMER_UNIT0_LOAD_LO_REG (0x0010)

SY
ST
IM
ER
_T
IM
ER
_U
NI
T0
_L
OA
D_
LO

0

31 0

Reset

SYSTIMER_TIMER_UNIT0_LOAD_LO The value to be loaded to UNIT0, low 32 bits. (R/W)

Espressif Systems 216
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.5. SYSTIMER_UNIT0_VALUE_HI_REG (0x0040)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

SY
ST
IM
ER
_T
IM
ER
_U
NI
T0
_V
AL
UE
_H
I

0

19 0

Reset

SYSTIMER_TIMER_UNIT0_VALUE_HI UNIT0 read value, high 20 bits. (RO)

Register 10.6. SYSTIMER_UNIT0_VALUE_LO_REG (0x0044)

SY
ST
IM
ER
_T
IM
ER
_U
NI
T0
_V
AL
UE
_L
O

0

31 0

Reset

SYSTIMER_TIMER_UNIT0_VALUE_LO UNIT0 read value, low 32 bits. (RO)

Register 10.7. SYSTIMER_UNIT0_LOAD_REG (0x005C)

(re
se
rve
d)

0 0

31 1

SY
ST
IM
ER
_T
IM
ER
_U
NI
T0
_L
OA
D

0

0

Reset

SYSTIMER_TIMER_UNIT0_LOAD UNIT0 synchronization enable signal. Set this bit to reload the val-

ues of SYSTIMER_TIMER_UNIT0_LOAD_HI and SYSTIMER_TIMER_UNIT0_LOAD_LO to UNIT0.

(WT)

Espressif Systems 217
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.8. SYSTIMER_UNIT1_OP_REG (0x0008)

(re
se
rve
d)

0

31

SY
ST
IM
ER
_T
IM
ER
_U
NI
T1
_U
PD
AT
E

0

30

SY
ST
IM
ER
_T
IM
ER
_U
NI
T1
_V
AL
UE
_V
AL
ID

0

29

(re
se
rve
d)

0 0

28 0

Reset

SYSTIMER_TIMER_UNIT1_VALUE_VALID UNIT1 value is synchronized and valid. (R/SS/WTC)

SYSTIMER_TIMER_UNIT1_UPDATE Update timer UNIT1, i.e. read the UNIT1 count value to SYS-

TIMER_TIMER_UNIT1_VALUE_HI and SYSTIMER_TIMER_UNIT1_VALUE_LO. (WT)

Register 10.9. SYSTIMER_UNIT1_LOAD_HI_REG (0x0014)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

SY
ST
IM
ER
_T
IM
ER
_U
NI
T1
_L
OA
D_
HI

0

19 0

Reset

SYSTIMER_TIMER_UNIT1_LOAD_HI The value to be loaded to UNIT1, high 20 bits. (R/W)

Register 10.10. SYSTIMER_UNIT1_LOAD_LO_REG (0x0018)

SY
ST
IM
ER
_T
IM
ER
_U
NI
T1
_L
OA
D_
LO

0

31 0

Reset

SYSTIMER_TIMER_UNIT1_LOAD_LO The value to be loaded to UNIT1, low 32 bits. (R/W)

Espressif Systems 218
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.11. SYSTIMER_UNIT1_VALUE_HI_REG (0x0048)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

SY
ST
IM
ER
_T
IM
ER
_U
NI
T1
_V
AL
UE
_H
I

0

19 0

Reset

SYSTIMER_TIMER_UNIT1_VALUE_HI UNIT1 read value, high 20 bits. (RO)

Register 10.12. SYSTIMER_UNIT1_VALUE_LO_REG (0x004C)

SY
ST
IM
ER
_T
IM
ER
_U
NI
T1
_V
AL
UE
_L
O

0

31 0

Reset

SYSTIMER_TIMER_UNIT1_VALUE_LO UNIT1 read value, low 32 bits. (RO)

Register 10.13. SYSTIMER_UNIT1_LOAD_REG (0x0060)

(re
se
rve
d)

0 0

31 1

SY
ST
IM
ER
_T
IM
ER
_U
NI
T1
_L
OA
D

0

0

Reset

SYSTIMER_TIMER_UNIT1_LOAD UNIT1 synchronization enable signal. Set this bit to reload the val-

ues of SYSTIMER_TIMER_UNIT1_LOAD_HI and SYSTIMER_TIMER_UNIT1_LOAD_LO to UNIT1.

(WT)

Espressif Systems 219
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.14. SYSTIMER_TARGET0_HI_REG (0x001C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

SY
ST
IM
ER
_T
IM
ER
_T
AR
GE
T0
_H
I

0

19 0

Reset

SYSTIMER_TIMER_TARGET0_HI The alarm value to be loaded to COMP0, high 20 bits. (R/W)

Register 10.15. SYSTIMER_TARGET0_LO_REG (0x0020)

SY
ST
IM
ER
_T
IM
ER
_T
AR
GE
T0
_L
O

0

31 0

Reset

SYSTIMER_TIMER_TARGET0_LO The alarm value to be loaded to COMP0, low 32 bits. (R/W)

Register 10.16. SYSTIMER_TARGET0_CONF_REG (0x0034)

SY
ST
IM
ER
_T
AR
GE
T0
_T
IM
ER
_U
NI
T_
SE
L

0

31

SY
ST
IM
ER
_T
AR
GE
T0
_P
ER
IO
D_
M
OD
E

0

30

(re
se
rve
d)

0 0 0 0

29 26

SY
ST
IM
ER
_T
AR
GE
T0
_P
ER
IO
D

0x00000

25 0

Reset

SYSTIMER_TARGET0_PERIOD COMP0 alarm period. (R/W)

SYSTIMER_TARGET0_PERIOD_MODE Set COMP0 to period mode. (R/W)

SYSTIMER_TARGET0_TIMER_UNIT_SEL Select which unit to compare for COMP0. (R/W)

Espressif Systems 220
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.17. SYSTIMER_COMP0_LOAD_REG (0x0050)

(re
se
rve
d)

0 0

31 1

SY
ST
IM
ER
_T
IM
ER
_C
OM

P0
_L
OA
D

0

0

Reset

SYSTIMER_TIMER_COMP0_LOAD COMP0 synchronization enable signal. Set this bit to reload the

alarm value/period to COMP0. (WT)

Register 10.18. SYSTIMER_TARGET1_HI_REG (0x0024)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

SY
ST
IM
ER
_T
IM
ER
_T
AR
GE
T1
_H
I

0

19 0

Reset

SYSTIMER_TIMER_TARGET1_HI The alarm value to be loaded to COMP1, high 20 bits. (R/W)

Register 10.19. SYSTIMER_TARGET1_LO_REG (0x0028)

SY
ST
IM
ER
_T
IM
ER
_T
AR
GE
T1
_L
O

0

31 0

Reset

SYSTIMER_TIMER_TARGET1_LO The alarm value to be loaded to COMP1, low 32 bits. (R/W)

Espressif Systems 221
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.20. SYSTIMER_TARGET1_CONF_REG (0x0038)

SY
ST
IM
ER
_T
AR
GE
T1
_T
IM
ER
_U
NI
T_
SE
L

0

31

SY
ST
IM
ER
_T
AR
GE
T1
_P
ER
IO
D_
M
OD
E

0

30

(re
se
rve
d)

0 0 0 0

29 26

SY
ST
IM
ER
_T
AR
GE
T1
_P
ER
IO
D

0x00000

25 0

Reset

SYSTIMER_TARGET1_PERIOD COMP1 alarm period. (R/W)

SYSTIMER_TARGET1_PERIOD_MODE Set COMP1 to period mode. (R/W)

SYSTIMER_TARGET1_TIMER_UNIT_SEL Select which unit to compare for COMP1. (R/W)

Register 10.21. SYSTIMER_COMP1_LOAD_REG (0x0054)

(re
se
rve
d)

0 0

31 1

SY
ST
IM
ER
_T
IM
ER
_C
OM

P1
_L
OA
D

0

0

Reset

SYSTIMER_TIMER_COMP1_LOAD COMP1 synchronization enable signal. Set this bit to reload the

alarm value/period to COMP1. (WT)

Register 10.22. SYSTIMER_TARGET2_HI_REG (0x002C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

SY
ST
IM
ER
_T
IM
ER
_T
AR
GE
T2
_H
I

0

19 0

Reset

SYSTIMER_TIMER_TARGET2_HI The alarm value to be loaded to COMP2, high 20 bits. (R/W)

Espressif Systems 222
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.23. SYSTIMER_TARGET2_LO_REG (0x0030)

SY
ST
IM
ER
_T
IM
ER
_T
AR
GE
T2
_L
O

0

31 0

Reset

SYSTIMER_TIMER_TARGET2_LO The alarm value to be loaded to COMP2, low 32 bits. (R/W)

Register 10.24. SYSTIMER_TARGET2_CONF_REG (0x003C)

SY
ST
IM
ER
_T
AR
GE
T2
_T
IM
ER
_U
NI
T_
SE
L

0

31

SY
ST
IM
ER
_T
AR
GE
T2
_P
ER
IO
D_
M
OD
E

0

30

(re
se
rve
d)

0 0 0 0

29 26

SY
ST
IM
ER
_T
AR
GE
T2
_P
ER
IO
D

0x00000

25 0

Reset

SYSTIMER_TARGET2_PERIOD COMP2 alarm period. (R/W)

SYSTIMER_TARGET2_PERIOD_MODE Set COMP2 to period mode. (R/W)

SYSTIMER_TARGET2_TIMER_UNIT_SEL Select which unit to compare for COMP2. (R/W)

Register 10.25. SYSTIMER_COMP2_LOAD_REG (0x0058)

(re
se
rve
d)

0 0

31 1

SY
ST
IM
ER
_T
IM
ER
_C
OM

P2
_L
OA
D

0

0

Reset

SYSTIMER_TIMER_COMP2_LOAD COMP2 synchronization enable signal. Set this bit to reload the

alarm value/period to COMP2. (WT)

Espressif Systems 223
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.26. SYSTIMER_INT_ENA_REG (0x0064)

(re
se
rve
d)

0 0

31 3

SY
ST
IM
ER
_T
AR
GE
T2
_IN
T_
EN
A

0

2

SY
ST
IM
ER
_T
AR
GE
T1
_IN
T_
EN
A

0

1

SY
ST
IM
ER
_T
AR
GE
T0
_IN
T_
EN
A

0

0

Reset

SYSTIMER_TARGET0_INT_ENA SYSTIMER_TARGET0_INT enable bit. (R/W)

SYSTIMER_TARGET1_INT_ENA SYSTIMER_TARGET1_INT enable bit. (R/W)

SYSTIMER_TARGET2_INT_ENA SYSTIMER_TARGET2_INT enable bit. (R/W)

Register 10.27. SYSTIMER_INT_RAW_REG (0x0068)

(re
se
rve
d)

0 0

31 3

SY
ST
IM
ER
_T
AR
GE
T2
_IN
T_
RA
W

0

2

SY
ST
IM
ER
_T
AR
GE
T1
_IN
T_
RA
W

0

1

SY
ST
IM
ER
_T
AR
GE
T0
_IN
T_
RA
W

0

0

Reset

SYSTIMER_TARGET0_INT_RAW SYSTIMER_TARGET0_INT raw bit. (R/WTC/SS)

SYSTIMER_TARGET1_INT_RAW SYSTIMER_TARGET1_INT raw bit. (R/WTC/SS)

SYSTIMER_TARGET2_INT_RAW SYSTIMER_TARGET2_INT raw bit. (R/WTC/SS)

Espressif Systems 224
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

10 System Timer (SYSTIMER) GoBack

Register 10.28. SYSTIMER_INT_CLR_REG (0x006C)

(re
se
rve
d)

0 0

31 3

SY
ST
IM
ER
_T
AR
GE
T2
_IN
T_
CL
R

0

2

SY
ST
IM
ER
_T
AR
GE
T1
_IN
T_
CL
R

0

1

SY
ST
IM
ER
_T
AR
GE
T0
_IN
T_
CL
R

0

0

Reset

SYSTIMER_TARGET0_INT_CLR SYSTIMER_TARGET0_INT clear bit. (WT)

SYSTIMER_TARGET1_INT_CLR SYSTIMER_TARGET1_INT clear bit. (WT)

SYSTIMER_TARGET2_INT_CLR SYSTIMER_TARGET2_INT clear bit. (WT)

Register 10.29. SYSTIMER_INT_ST_REG (0x0070)

(re
se
rve
d)

0 0

31 3

SY
ST
IM
ER
_T
AR
GE
T2
_IN
T_
ST

0

2

SY
ST
IM
ER
_T
AR
GE
T1
_IN
T_
ST

0

1

SY
ST
IM
ER
_T
AR
GE
T0
_IN
T_
ST

0

0

Reset

SYSTIMER_TARGET0_INT_ST SYSTIMER_TARGET0_INT status bit. (RO)

SYSTIMER_TARGET1_INT_ST SYSTIMER_TARGET1_INT status bit. (RO)

SYSTIMER_TARGET2_INT_ST SYSTIMER_TARGET2_INT status bit. (RO)

Register 10.30. SYSTIMER_DATE_REG (0x00FC)

SY
ST
IM
ER
_D
AT
E

0x2006171

31 0

Reset

SYSTIMER_DATE Version control register. (R/W)

Espressif Systems 225
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

11 Timer Group (TIMG)

11.1 Overview

General-purpose timers can be used to precisely time an interval, trigger an interrupt after a particular interval

(periodically and aperiodically), or act as a hardware clock. As shown in Figure 11-1, the ESP8684 chip contains

one timer group, namely timer group 0. The timer group consists of one general-purpose timer referred to as T0

and one Main System Watchdog Timer. The general-purpose timer is based on a 16-bit prescaler and a 54-bit

auto-reload-capable up-down counter.

Figure 11­1. Timer Group Overview

Note that while the Main System Watchdog Timer registers are described in this chapter, their functional

description is included in the Chapter 12 Watchdog Timers (WDT). Therefore, the term ‘timer’ within this chapter

refers to the general-purpose timer.

11.2 Features

The timer’s features are summarized as follows:

• A 54-bit time-base counter programmable to incrementing or decrementing

• Two clock sources: 40 MHz PLL_40M_CLK or XTAL_CLK

• A 16-bit clock prescaler, from 2 to 65536

• Able to read real-time value of the time-base counter

• Able to halt and resume the time-base counter

• Programmable alarm generation

• Timer value reload — Auto-reload at alarm or software-controlled instant reload

• RTC slow clock SLOW_CLK frequency calculation

• Level interrupt generation

Espressif Systems 226
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

11.3 Functional Description

Figure 11­2. Timer Group Architecture

Figure 11-2 is a diagram of timer T0 in a timer group. T0 contains a clock selector, a 16-bit integer divider as a

prescaler, a timer-based counter and a comparator for alarm generation.

11.3.1 16­bit Prescaler and Clock Selection

The timer can select between the PLL_40M_CLK clock or external clock (XTAL_CLK) as its clock source by

setting the TIMG_T0_USE_XTAL field of the TIMG_T0CONFIG_REG register. Note that when the chip is in

low-power mode and the clock source of CPU_CLK is not PLL_CLK (i.e. when SYSTEM_SOC_CLK_SEL is not

1, see details in Table 6-2 of Chapter 6 Reset and Clock), the timer can only select XTAL_CLK.

The selected clock can be switched on by setting TIMG_TIMER_CLK_IS_ACTIVE field of the

TIMG_REGCLK_REG register to 1 and switched off by setting it to 0. The clock is then divided by a 16-bit

prescaler to generate the time-base counter clock (TB_CLK) used by the time-base counter. When the

TIMG_T0_DIVIDER field is configured as 2 ~ 65536, the divisor of the prescaler would be 2 ~ 65536. Note that

programming value 0 to TIMG_T0_DIVIDER will result in the divisor being 65536. When the TIMG_T0_DIVIDER is

set to 1, the actual divisor is 2 so the timer counter value represents the half of real time.

To modify the 16-bit prescaler, please first configure the TIMG_T0_DIVIDER field, and then set

TIMG_T0_DIVIDER_RST to 1. Meanwhile, the timer must be disabled (i.e. TIMG_T0_EN should be cleared).

Otherwise, the result can be unpredictable.

11.3.2 54­bit Time­base Counter

The 54-bit time-base counter is based on TB_CLK and can be configured to increment or decrement via the

TIMG_T0_INCREASE field. The time-base counter can be enabled or disabled by setting or clearing the

TIMG_T0_EN field, respectively. When enabled, the time-base counter increments or decrements on each cycle

of TB_CLK. When disabled, the time-base counter is essentially frozen. Note that the TIMG_T0_INCREASE field

can be changed no matter whether TIMG_T0_EN is set or not, and this will cause the time-base counter to

change direction instantly.

To read the 54-bit value of the time-base counter, the timer value must be latched to two registers before being

read by the CPU (due to the CPU being 32-bit). By writing any value to the TIMG_T0UPDATE_REG, the current

value of the 54-bit timer is instantly latched into the TIMG_T0LO_REG and TIMG_T0HI_REG registers containing

the lower 32-bits and higher 22-bits, respectively. TIMG_T0LO_REG and TIMG_T0HI_REG registers will remain

unchanged for the CPU to read in its own time until TIMG_T0UPDATE_REG is written to again.

Espressif Systems 227
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

11.3.3 Alarm Generation

A timer can be configured to trigger an alarm when the timer’s current value matches the alarm value. An alarm

will cause an interrupt to occur and (optionally) an automatic reload of the timer’s current value (see Section

11.3.4).

The 54-bit alarm value is configured using TIMG_T0ALARMLO_REG and TIMG_T0ALARMHI_REG, which

represent the lower 32-bits and higher 22-bits of the alarm value, respectively. However, the configured alarm

value is ineffective until the alarm is enabled by setting the TIMG_T0_ALARM_EN field. To avoid alarm being

enabled ‘too late’ (i.e. the timer value has already passed the alarm value when the alarm is enabled), the

hardware will trigger the alarm immediately if the current timer value is:

• higher than the alarm value (within a defined range) when the up-down counter increments

• lower than the alarm value (within a defined range) when the up-down counter decrements

Table 11-1 and Table 11-2 show the relationship between the current value of the timer, the alarm value, and

when an alarm is triggered. The current time value and the alarm value are defined as follows:

• TIMG_VALUE = {TIMG_T0HI_REG, TIMG_T0LO_REG}

• ALARM_VALUE = {TIMG_T0ALARMHI_REG, TIMG_T0ALARMLO_REG}

Table 11­1. Alarm Generation When Up­Down Counter Increments

Scenario Range Alarm

1 ALARM_VALUE − TIMG_VALUE > 253 Triggered

2 0 < ALARM_VALUE − TIMG_VALUE ≤ 253
Triggered when the up-down counter counts

TIMG_VALUE up to ALARM_VALUE

3 0 ≤ TIMG_VALUE − ALARM_VALUE < 253 Triggered

4 TIMG_VALUE − ALARM_VALUE ≥ 253

Triggered when the up-down counter restarts

counting up from 0 after reaching the timer’s

maximum value and counts TIMG_VALUE up

to ALARM_VALUE

Table 11­2. Alarm Generation When Up­Down Counter Decrements

Scenario Range Alarm

5 TIMG_VALUE − ALARM_VALUE > 253 Triggered

6 0 < TIMG_VALUE − ALARM_VALUE ≤ 253
Triggered when the up-down counter counts

TIMG_VALUE down to ALARM_VALUE

7 0 ≤ ALARM_VALUE − TIMG_VALUE < 253 Triggered

8 ALARM_VALUE − TIMG_VALUE ≥ 253

Triggered when the up-down counter restarts

counting down from the timer’s maximum value

after reaching the minimum value and counts

TIMG_VALUE down to ALARM_VALUE

When an alarm occurs, the TIMG_T0_ALARM_EN field is automatically cleared and no alarm will occur again until

the TIMG_T0_ALARM_EN is set next time.

Espressif Systems 228
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

11.3.4 Timer Reload

A timer is reloaded when a timer’s current value is overwritten with a reload value stored in the

TIMG_T0_LOAD_LO and TIMG_T0_LOAD_HI fields that correspond to the lower 32-bits and higher 22-bits of

the timer’s new value, respectively. However, writing a reload value to TIMG_T0_LOAD_LO and

TIMG_T0_LOAD_HI will not cause the timer’s current value to change. Instead, the reload value is ignored by the

timer until a reload event occurs. A reload event can be triggered either by a software instant reload or an

auto-reload at alarm.

A software instant reload is triggered by the CPU writing any value to TIMG_T0LOAD_REG, which causes the

timer’s current value to be instantly reloaded. If TIMG_T0_EN is set, the timer will continue incrementing or

decrementing from the new value. In this case if TIMG_T0_ALARM_EN is set, the timer will still trigger alarms in

scenarios listed in Table 11-1 and 11-2. If TIMG_T0_EN is cleared, the timer will remain frozen at the new value

until counting is re-enabled.

An auto-reload at alarm will cause a timer reload when an alarm occurs, thus allowing the timer to continue

incrementing or decrementing from the reload value. This is generally useful for resetting the timer’s value when

using periodic alarms. To enable auto-reload at alarm, the TIMG_T0_AUTORELOAD field should be set. If not

enabled, the timer’s value will continue to increment or decrement past the alarm value after an alarm.

11.3.5 SLOW_CLK Frequency Calculation

Using XTAL_CLK as a reference, it is possible to calculate the frequency of clock sources for SLOW_CLK (i.e.

RTC_CLK, FOSC_DIV_CLK, and XTAL32K_CLK) as follows:

1. Start periodic or one-shot frequency calculation (see Section 11.4.4 for details);

2. Once receiving the signal to start calculation, the counter of XTAL_CLK and the counter of SLOW_CLK

begin to work at the same time. When the counter of SLOW_CLK counts to C0, the two counters stop

counting simultaneously;

3. Assume the value of XTAL_CLK’s counter is C1, and the frequency of SLOW_CLK would be calculated as:

f_rtc = C0×f_XTAL_CLK
C1

11.3.6 Interrupts

Each timer has its own interrupt line that can be routed to the CPU, and thus each timer group has a total of two

interrupt lines. Timers generate level interrupts that must be explicitly cleared by the CPU on each

triggering.

Interrupts are triggered after an alarm (or stage timeout for watchdog timers) occurs. Level interrupts will be held

high after an alarm (or stage timeout) occurs, and will remain so until manually cleared. To enable a timer’s

interrupt, the TIMG_T0_INT_ENA bit should be set.

The interrupts of each timer group are governed by a set of registers. Each timer within the group has a

corresponding bit in each of these registers:

• TIMG_T0_INT_RAW : An alarm event sets it to 1. The bit will remain set until the timer’s corresponding bit in

TIMG_T0_INT_CLR is written.

• TIMG_WDT_INT_RAW : A stage time out will set the timer’s bit to 1. The bit will remain set until the timer’s

corresponding bit in TIMG_WDT_INT_CLR is written.

Espressif Systems 229
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

• TIMG_T0_INT_ST : Reflects the status of each timer’s interrupt and is generated by masking the bits of

TIMG_T0_INT_RAW with TIMG_T0_INT_ENA.

• TIMG_WDT_INT_ST : Reflects the status of each watchdog timer’s interrupt and is generated by masking

the bits of TIMG_WDT_INT_RAW with TIMG_WDT_INT_ENA.

• TIMG_T0_INT_ENA : Used to enable or mask the interrupt status bits of timers within the group.

• TIMG_WDT_INT_ENA : Used to enable or mask the interrupt status bits of watchdog timer within the group.

• TIMG_T0_INT_CLR : Used to clear a timer’s interrupt by setting its corresponding bit to 1. The timer’s

corresponding bit in TIMG_T0_INT_RAW and TIMG_T0_INT_ST will be cleared as a result. Note that a

timer’s interrupt must be cleared before the next interrupt occurs.

• TIMG_WDT_INT_CLR : Used to clear a timer’s interrupt by setting its corresponding bit to 1. The watchdog

timer’s corresponding bit in TIMG_WDT_INT_RAW and TIMG_WDT_INT_ST will be cleared as a result.

Note that a watchdog timer’s interrupt must be cleared before the next interrupt occurs.

11.4 Configuration and Usage

11.4.1 Timer as a Simple Clock

1. Configure the time-base counter

• Select clock source by setting or clearing TIMG_T0_USE_XTAL field. When CPU works in high

performance mode, any value can be written to this field. When CPU works at low frequencies (i.e.

when SYSTEM_SOC_CLK_SEL is not 1), this field must be set to 1.

• Configure the 16-bit prescaler by setting TIMG_T0_DIVIDER.

• Configure the timer direction by setting or clearing TIMG_T0_INCREASE.

• Set the timer’s starting value by writing the starting value to TIMG_T0_LOAD_LO and

TIMG_T0_LOAD_HI, then reloading it into the timer by writing any value to TIMG_T0LOAD_REG.

2. Start the timer by setting TIMG_T0_EN.

3. Get the timer’s current value.

• Write any value to TIMG_T0UPDATE_REG to latch the timer’s current value.

• Read the latched timer value from TIMG_T0LO_REG and TIMG_T0HI_REG.

11.4.2 Timer as One­shot Alarm

1. Configure the time-base counter following step 1 of Section 11.4.1.

2. Configure the alarm.

• Configure the alarm value by setting TIMG_T0ALARMLO_REG and TIMG_T0ALARMHI_REG.

• Enable interrupt by setting TIMG_T0_INT_ENA.

3. Disable auto reload by clearing TIMG_T0_AUTORELOAD.

4. Start the alarm by setting TIMG_T0_ALARM_EN.

5. Handle the alarm interrupt.

Espressif Systems 230
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

• Clear the interrupt by setting the timer’s corresponding bit in TIMG_T0_INT_CLR.

• Disable the timer by clearing TIMG_T0_EN.

11.4.3 Timer as Periodic Alarm

1. Configure the time-base counter following step 1 in Section 11.4.1.

2. Configure the alarm following step 2 in Section 11.4.2.

3. Enable auto reload by setting TIMG_T0_AUTORELOAD and configure the reload value via

TIMG_T0_LOAD_LO and TIMG_T0_LOAD_HI.

4. Start the alarm by setting TIMG_T0_ALARM_EN.

5. Handle the alarm interrupt (repeat on each alarm iteration).

• Clear the interrupt by setting the timer’s corresponding bit in TIMG_T0_INT_CLR.

• If the next alarm requires a new alarm value and reload value (i.e. different alarm interval per iteration),

then TIMG_T0ALARMLO_REG, TIMG_T0ALARMHI_REG, TIMG_T0_LOAD_LO, and

TIMG_T0_LOAD_HI should be reconfigured as needed. Otherwise, the aforementioned registers

should remain unchanged.

• Re-enable the alarm by setting TIMG_T0_ALARM_EN.

6. Stop the timer (on final alarm iteration).

• Clear the interrupt by setting the timer’s corresponding bit in TIMG_T0_INT_CLR.

• Disable the timer by clearing TIMG_T0_EN.

11.4.4 SLOW_CLK Frequency Calculation

1. One-shot frequency calculation

• Select the clock whose frequency is to be calculated (clock source of SLOW_CLK) via

TIMG_RTC_CALI_CLK_SEL, and configure the time of calculation via TIMG_RTC_CALI_MAX.

• Select one-shot frequency calculation by clearing TIMG_RTC_CALI_START_CYCLING, and enable

the two counters via TIMG_RTC_CALI_START.

• Once TIMG_RTC_CALI_RDY becomes 1, read TIMG_RTC_CALI_VALUE to get the value of

XTAL_CLK’s counter, and calculate the frequency of SLOW_CLK according to the formula in Section

11.3.5.

2. Periodic frequency calculation

• Select the clock whose frequency is to be calculated (clock source of SLOW_CLK) via

TIMG_RTC_CALI_CLK_SEL, and configure the time of calculation via TIMG_RTC_CALI_MAX.

• Select periodic frequency calculation by enabling TIMG_RTC_CALI_START_CYCLING.

• When TIMG_RTC_CALI_CYCLING_DATA_VLD is 1, TIMG_RTC_CALI_VALUE is valid.

3. Timeout

If the counter of SLOW_CLK cannot finish counting in TIMG_RTC_CALI_TIMEOUT_RST_CNT cycles,

TIMG_RTC_CALI_TIMEOUT will be set to indicate a timeout.

Espressif Systems 231
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

11.5 Register Summary

The addresses in this section are relative to Timer Group base address provided in Table 3-3 in Chapter 3 System

and Memory.

Name Description Address Access

T0 control and configuration registers

TIMG_T0CONFIG_REG Timer 0 configuration register 0x0000 varies

TIMG_T0LO_REG Timer 0 current value, low 32 bits 0x0004 RO

TIMG_T0HI_REG Timer 0 current value, high 22 bits 0x0008 RO

TIMG_T0UPDATE_REG Write to copy current timer value to

TIMG_T0LO_REG or TIMG_T0HI_REG

0x000C R/W/SC

TIMG_T0ALARMLO_REG Timer 0 alarm value, low 32 bits 0x0010 R/W

TIMG_T0ALARMHI_REG Timer 0 alarm value, high bits 0x0014 R/W

TIMG_T0LOADLO_REG Timer 0 reload value, low 32 bits 0x0018 R/W

TIMG_T0LOADHI_REG Timer 0 reload value, high 22 bits 0x001C R/W

TIMG_T0LOAD_REG Write to reload timer from

TIMG_T0LOADLO_REG or

TIMG_T0LOADHI_REG

0x0020 WT

WDT control and configuration registers

TIMG_WDTCONFIG0_REG Watchdog timer configuration register 0x0048 varies

TIMG_WDTCONFIG1_REG Watchdog timer prescaler register 0x004C varies

TIMG_WDTCONFIG2_REG Watchdog timer stage 0 timeout value 0x0050 R/W

TIMG_WDTCONFIG3_REG Watchdog timer stage 1 timeout value 0x0054 R/W

TIMG_WDTCONFIG4_REG Watchdog timer stage 2 timeout value 0x0058 R/W

TIMG_WDTCONFIG5_REG Watchdog timer stage 3 timeout value 0x005C R/W

TIMG_WDTFEED_REG Write to feed the watchdog timer 0x0060 WT

TIMG_WDTWPROTECT_REG Watchdog write protect register 0x0064 R/W

RTC frequency calculation control and configuration registers

TIMG_RTCCALICFG_REG RTC frequency calculation configuration reg-

ister 0

0x0068 varies

TIMG_RTCCALICFG1_REG RTC frequency calculation configuration reg-

ister 1

0x006C RO

TIMG_RTCCALICFG2_REG RTC frequency calculation configuration reg-

ister 2

0x0080 varies

Interrupt registers

TIMG_INT_ENA_TIMERS_REG Interrupt enable bits 0x0070 R/W

TIMG_INT_RAW_TIMERS_REG Raw interrupt status 0x0074 R/SS/WTC

TIMG_INT_ST_TIMERS_REG Masked interrupt status 0x0078 RO

TIMG_INT_CLR_TIMERS_REG Interrupt clear bits 0x007C WT

Version register

TIMG_NTIMERS_DATE_REG Timer version control register 0x00F8 R/W

Clock configuration registers

TIMG_REGCLK_REG Timer group clock gate register 0x00FC R/W

Espressif Systems 232
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

11.6 Registers

The addresses in this section are relative to Timer Group base address provided in Table 3-3 in Chapter 3 System

and Memory.

Register 11.1. TIMG_T0CONFIG_REG (0x0000)

TIM
G_
T0
_E
N

0

31

TIM
G_
T0
_IN
CR
EA
SE

1

30

TIM
G_
T0
_A
UT
OR
EL
OA
D

1

29

TIM
G_
T0
_D
IVI
DE
R

0x01

28 13

TIM
G_
T0
_D
IVI
DE
R_
RS
T

0

12

(re
se
rve
d)

0

11

TIM
G_
T0
_A
LA
RM
_E
N

0

10

TIM
G_
T0
_U
SE
_X
TA
L

0

9

(re
se
rve
d)

0 0 0 0 0 0 0 0 0

8 0

Reset

TIMG_T0_USE_XTAL 1: Use XTAL_CLK as the source clock of timer group. 0: Use PLL_40M_CLK

as the source clock of timer group. (R/W)

TIMG_T0_ALARM_EN When set, the alarm is enabled. This bit is automatically cleared once an alarm

occurs. (R/W/SC)

TIMG_T0_DIVIDER_RST When set, timer 0 ’s clock divider counter will be reset. (WT)

TIMG_T0_DIVIDER Timer 0 clock (T0_clk) prescaler value. (R/W)

TIMG_T0_AUTORELOAD When set, timer 0 auto-reload at alarm is enabled. (R/W)

TIMG_T0_INCREASE When set, the timer 0 time-base counter will increment every clock tick. When

cleared, the timer 0 time-base counter will decrement. (R/W)

TIMG_T0_EN When set, the timer 0 time-base counter is enabled. (R/W)

Register 11.2. TIMG_T0LO_REG (0x0004)

TIM
G_
T0
_L
O

0x000000

31 0

Reset

TIMG_T0_LO After writing to TIMG_T0UPDATE_REG, the low 32 bits of the time-base counter of

timer 0 can be read here. (RO)

Espressif Systems 233
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

Register 11.3. TIMG_T0HI_REG (0x0008)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

TIM
G_
T0
_H
I

0x0000

21 0

Reset

TIMG_T0_HI After writing to TIMG_T0UPDATE_REG, the high 22 bits of the time-base counter of

timer 0 can be read here. (RO)

Register 11.4. TIMG_T0UPDATE_REG (0x000C)

TIM
G_
T0
_U
PD
AT
E

0

31

(re
se
rve
d)

0 0

30 0

Reset

TIMG_T0_UPDATE After writing 0 or 1 to TIMG_T0UPDATE_REG, the counter value is latched.

(R/W/SC)

Register 11.5. TIMG_T0ALARMLO_REG (0x0010)

TIM
G_
T0
_A
LA
RM
_L
O

0x000000

31 0

Reset

TIMG_T0_ALARM_LO Timer 0 alarm trigger time-base counter value, low 32 bits. (R/W)

Register 11.6. TIMG_T0ALARMHI_REG (0x0014)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

TIM
G_
T0
_A
LA
RM
_H
I

0x0000

21 0

Reset

TIMG_T0_ALARM_HI Timer 0 alarm trigger time-base counter value, high 22 bits. (R/W)

Espressif Systems 234
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

Register 11.7. TIMG_T0LOADLO_REG (0x0018)

TIM
G_
T0
_L
OA
D_
LO

0x000000

31 0

Reset

TIMG_T0_LOAD_LO Low 32 bits of the value that a reload will load onto timer 0 time-base counter.

(R/W)

Register 11.8. TIMG_T0LOADHI_REG (0x001C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

TIM
G_
T0
_L
OA
D_
HI

0x0000

21 0

Reset

TIMG_T0_LOAD_HI High 22 bits of the value that a reload will load onto timer 0 time-base counter.

(R/W)

Register 11.9. TIMG_T0LOAD_REG (0x0020)

TIM
G_
T0
_L
OA
D

0x000000

31 0

Reset

TIMG_T0_LOAD Write any value to trigger a timer 0 time-base counter reload. (WT)

Espressif Systems 235
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

Register 11.10. TIMG_WDTCONFIG0_REG (0x0048)

TIM
G_
W
DT
_E
N

0

31

TIM
G_
W
DT
_S
TG
0

0

30 29

TIM
G_
W
DT
_S
TG
1

0

28 27

TIM
G_
W
DT
_S
TG
2

0

26 25

TIM
G_
W
DT
_S
TG
3

0

24 23

TIM
G_
W
DT
_C
ON
F_
UP
DA
TE
_E
N

0

22

TIM
G_
W
DT
_U
SE
_X
TA
L

0

21

TIM
G_
W
DT
_C
PU
_R
ES
ET
_L
EN
GT
H

0x1

20 18

TIM
G_
W
DT
_S
YS
_R
ES
ET
_L
EN
GT
H

0x1

17 15

TIM
G_
W
DT
_F
LA
SH
BO
OT
_M
OD
_E
N

1

14

TIM
G_
W
DT
_P
RO
CP
U_
RE
SE
T_
EN

0

13

(re
se
rve
d)

0

12

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

TIMG_WDT_PROCPU_RESET_EN WDT reset CPU enable. (R/W)

TIMG_WDT_FLASHBOOT_MOD_EN When set, Flash boot protection is enabled. (R/W)

TIMG_WDT_SYS_RESET_LENGTH System reset signal length selection. 0: 100 ns, 1: 200 ns, 2:

300 ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 µs, 7: 3.2 µs. (R/W)

TIMG_WDT_CPU_RESET_LENGTH CPU reset signal length selection. 0: 100 ns, 1: 200 ns, 2: 300

ns, 3: 400 ns, 4: 500 ns, 5: 800 ns, 6: 1.6 µs, 7: 3.2 µs. (R/W)

TIMG_WDT_USE_XTAL Chooses WDT clock. 0: PLL_40M_CLK, 1: XTAL_CLK. (R/W)

TIMG_WDT_CONF_UPDATE_EN Updates the WDT configuration registers. (WT)

TIMG_WDT_STG3 Stage 3 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system. (R/W)

TIMG_WDT_STG2 Stage 2 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system. (R/W)

TIMG_WDT_STG1 Stage 1 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system. (R/W)

TIMG_WDT_STG0 Stage 0 configuration. 0: off, 1: interrupt, 2: reset CPU, 3: reset system. (R/W)

TIMG_WDT_EN When set, MWDT is enabled. (R/W)

Register 11.11. TIMG_WDTCONFIG1_REG (0x004C)

TIM
G_
W
DT
_C
LK
_P
RE
SC
AL
E

0x01

31 16

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 1

TIM
G_
W
DT
_D
IVC

NT
_R
ST

0

0

Reset

TIMG_WDT_DIVCNT_RST When set, WDT ’s clock divider counter will be reset. (WT)

TIMG_WDT_CLK_PRESCALE MWDT clock prescaler value. MWDT clock period = 12.5 ns *

TIMG_WDT_CLK_PRESCALE. (R/W)

Espressif Systems 236
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

Register 11.12. TIMG_WDTCONFIG2_REG (0x0050)

TIM
G_
W
DT
_S
TG
0_
HO
LD

26000000

31 0

Reset

TIMG_WDT_STG0_HOLD Stage 0 timeout value, in MWDT clock cycles. (R/W)

Register 11.13. TIMG_WDTCONFIG3_REG (0x0054)

TIM
G_
W
DT
_S
TG
1_
HO
LD

0x7ffffff

31 0

Reset

TIMG_WDT_STG1_HOLD Stage 1 timeout value, in MWDT clock cycles. (R/W)

Register 11.14. TIMG_WDTCONFIG4_REG (0x0058)

TIM
G_
W
DT
_S
TG
2_
HO
LD

0x0fffff

31 0

Reset

TIMG_WDT_STG2_HOLD Stage 2 timeout value, in MWDT clock cycles. (R/W)

Espressif Systems 237
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

Register 11.15. TIMG_WDTCONFIG5_REG (0x005C)

TIM
G_
W
DT
_S
TG
3_
HO
LD

0x0fffff

31 0

Reset

TIMG_WDT_STG3_HOLD Stage 3 timeout value, in MWDT clock cycles. (R/W)

Register 11.16. TIMG_WDTFEED_REG (0x0060)

TIM
G_
W
DT
_F
EE
D

0x000000

31 0

Reset

TIMG_WDT_FEED Write any value to feed the MWDT. (WO) (WT)

Register 11.17. TIMG_WDTWPROTECT_REG (0x0064)

TIM
G_
W
DT
_W
KE
Y

0x50d83aa1

31 0

Reset

TIMG_WDT_WKEY If the register contains a different value than its reset value, write protection is

enabled. (R/W)

Espressif Systems 238
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

Register 11.18. TIMG_RTCCALICFG_REG (0x0068)

TIM
G_
RT
C_
CA
LI_
ST
AR
T

0

31

TIM
G_
RT
C_
CA
LI_
M
AX

0x01

30 16

TIM
G_
RT
C_
CA
LI_
RD
Y

0

15

TIM
G_
RT
C_
CA
LI_
CL
K_
SE
L

0x1

14 13

TIM
G_
RT
C_
CA
LI_
ST
AR
T_
CY
CL
IN
G

1

12

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

11 0

Reset

TIMG_RTC_CALI_START_CYCLING 0: one-shot frequency calculation mode, 1: periodic frequency

calculation mode. (R/W)

TIMG_RTC_CALI_CLK_SEL 0: RTC_CLK, 1: FOSC_DIV_CLK, 2: XTAL32K_CLK. (R/W)

TIMG_RTC_CALI_RDY Marks the completion of one-shot frequency calculation. (RO)

TIMG_RTC_CALI_MAX Configures the time to calculate the frequency of RTC slow clock

SLOW_CLK. Measurement unit: SLOW_CLK cycle. (R/W)

TIMG_RTC_CALI_START Set this bit to start one-shot frequency calculation. (R/W)

Register 11.19. TIMG_RTCCALICFG1_REG (0x006C)

TIM
G_
RT
C_
CA
LI_
VA
LU
E

0x00000

31 7

(re
se
rve
d)

0 0 0 0 0 0

6 1

TIM
G_
RT
C_
CA
LI_
CY
CL
IN
G_
DA
TA
_V
LD

0

0

Reset

TIMG_RTC_CALI_CYCLING_DATA_VLD Marks the completion of periodic frequency calculation.

(RO)

TIMG_RTC_CALI_VALUE When one-shot or periodic frequency calculation completes, read this

value to calculate the frequency of RTC slow clock SLOW_CLK. Measurement unit: XTAL_CLK

cycle. (RO)

Espressif Systems 239
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

Register 11.20. TIMG_RTCCALICFG2_REG (0x0080)

TIM
G_
RT
C_
CA
LI_
TIM

EO
UT
_T
HR
ES

0x1ffffff

31 7

TIM
G_
RT
C_
CA
LI_
TIM

EO
UT
_R
ST
_C
NT

3

6 3

(re
se
rve
d)

0 0

2 1

TIM
G_
RT
C_
CA
LI_
TIM

EO
UT

0

0

Reset

TIMG_RTC_CALI_TIMEOUT Indicates frequency calculation timeout. (RO)

TIMG_RTC_CALI_TIMEOUT_RST_CNT Cycles to reset frequency calculation timeout. (R/W)

TIMG_RTC_CALI_TIMEOUT_THRES Threshold value for the frequency calculation timer. If the

timer’s value exceeds this threshold, a timeout is triggered. (R/W)

Register 11.21. TIMG_INT_ENA_TIMERS_REG (0x0070)

(re
se
rve
d)

0 0

31 2

TIM
G_
W
DT
_IN
T_
EN
A

0

1

TIM
G_
T0
_IN
T_
EN
A

0

0

Reset

TIMG_T0_INT_ENA The interrupt enable bit for the TIMG_T0_INT interrupt. (R/W)

TIMG_WDT_INT_ENA The interrupt enable bit for the TIMG_WDT_INT interrupt. (R/W)

Register 11.22. TIMG_INT_RAW_TIMERS_REG (0x0074)

(re
se
rve
d)

0 0

31 2

TIM
G_
W
DT
_IN
T_
RA
W

0

1

TIM
G_
T0
_IN
T_
RA
W

0

0

Reset

TIMG_T0_INT_RAW The raw interrupt status bit for the TIMG_T0_INT interrupt. (R/SS/WTC)

TIMG_WDT_INT_RAW The raw interrupt status bit for the TIMG_WDT_INT interrupt. (R/SS/WTC)

Espressif Systems 240
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

Register 11.23. TIMG_INT_ST_TIMERS_REG (0x0078)

(re
se
rve
d)

0 0

31 2

TIM
G_
W
DT
_IN
T_
ST

0

1

TIM
G_
T0
_IN
T_
ST

0

0

Reset

TIMG_T0_INT_ST The masked interrupt status bit for the TIMG_T0_INT interrupt. (RO)

TIMG_WDT_INT_ST The masked interrupt status bit for the TIMG_WDT_INT interrupt. (RO)

Register 11.24. TIMG_INT_CLR_TIMERS_REG (0x007C)

(re
se
rve
d)

0 0

31 2

TIM
G_
W
DT
_IN
T_
CL
R

0

1

TIM
G_
T0
_IN
T_
CL
R

0

0

Reset

TIMG_T0_INT_CLR Set this bit to clear the TIMG_T0_INT interrupt. (WT)

TIMG_WDT_INT_CLR Set this bit to clear the TIMG_WDT_INT interrupt. (WT)

Register 11.25. TIMG_NTIMERS_DATE_REG (0x00F8)

(re
se
rve
d)

0 0 0 0

31 28

TIM
G_
NT
IM
GS
_D
AT
E

0x2006191

27 0

Reset

TIMG_NTIMGS_DATE This is the version control register. (R/W)

Espressif Systems 241
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

11 Timer Group (TIMG) GoBack

Register 11.26. TIMG_REGCLK_REG (0x00FC)

TIM
G_
CL
K_
EN

0

31

TIM
G_
TIM

ER
_C
LK
_IS
_A
CT
IVE

1

30

TIM
G_
W
DT
_C
LK
_IS
_A
CT
IVE

1

29

(re
se
rve
d)

0 0

28 0

Reset

TIMG_WDT_CLK_IS_ACTIVE Enable WDT’s clock. (R/W)

TIMG_TIMER_CLK_IS_ACTIVE Enable timer 0’s clock. (R/W)

TIMG_CLK_EN Register clock gate signal. 1: Registers can be read and written to by software. 0:

Registers can not be read or written to by software. (R/W)

Espressif Systems 242
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

12 Watchdog Timers (WDT) GoBack

12 Watchdog Timers (WDT)

12.1 Overview

Watchdog timers are hardware timers used to detect and recover from malfunctions. They must be periodically

fed (reset) to prevent a timeout. A system/software that is behaving unexpectedly (e.g. is stuck in a software loop

or in overdue events) will fail to feed the watchdog thus trigger a watchdog timeout. Therefore, watchdog timers

are useful for detecting and handling erroneous system/software behavior.

As shown in Figure 12-1, ESP8684 contains two digital watchdog timers: one in the timer group in Chapter 11

Timer Group (TIMG) (called Main System Watchdog Timer, or MWDT) and one in the RTC Module (called the RTC

Watchdog Timer, or RWDT). Each digital watchdog timer allows for four separately configurable stages and each

stage can be programmed to take one action upon timeout, unless the watchdog is fed or disabled. MWDT

supports three timeout actions: interrupt, CPU reset, and core reset, while RWDT supports four timeout actions:

interrupt, CPU reset, core reset, and system reset (see details in Section 12.2.2.2 Stages and Timeout Actions). A

timeout value can be set for each stage individually.

During the flash boot process, RWDT and the MWDT in timergroup 0 are enabled automatically in order to detect

and recover from booting errors.

ESP8684 also has one analog watchdog timer: Super watchdog (SWD). It is an ultra-low-power circuit in analog

domain that helps to prevent the system from operating in a sub-optimal state and resets the system if

required.

Figure 12­1. Watchdog Timers Overview

Note that while this chapter provides the functional descriptions of the watchdog timer’s, their register

descriptions are provided in Chapter 11 Timer Group (TIMG) and Chapter 9 Low-power Management

(RTC_CNTL).

Espressif Systems 243
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

12 Watchdog Timers (WDT) GoBack

12.2 Digital Watchdog Timers

12.2.1 Features

Watchdog timers have the following features:

• Four stages, each with a separately programmable timeout value and timeout action

• Timeout actions:

– MWDT: interrupt, CPU reset, core reset

– RWDT: interrupt, CPU reset, core reset, system reset

• Flash boot protection at stage 0:

– MWDT: core reset upon timeout

– RWDT: system reset upon timeout

• Write protection that makes WDT register read only unless unlocked

• 32-bit timeout counter

• Clock source:

– MWDT: 40 MHz PLL_40M_CLK or XTAL_CLK

– RWDT: RTC SLOW_CLK

12.2.2 Functional Description

Figure 12­2. Digital Watchdog Timers in ESP8684

Figure 12-2 shows the two watchdog timers in ESP8684 digital systems.

Espressif Systems 244
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

12 Watchdog Timers (WDT) GoBack

12.2.2.1 Clock Source and 32­Bit Counter

At the core of each watchdog timer is a 32-bit counter.

MWDT can select between the PLL_40M_CLK clock or external clock (XTAL_CLK) as its clock source by setting

the TIMG_WDT_USE_XTAL field of the TIMG_WDTCONFIG0_REG register. Note that when the chip is in

low-power mode and the clock source of CPU_CLK is not PLL_CLK (i.e. when SYSTEM_SOC_CLK_SEL is not

1, see details in Table 6-2 of Chapter 6 Reset and Clock), MWDT can only select XTAL_CLK. The selected clock

is switched on by setting TIMG_WDT_CLK_IS_ACTIVE field of the TIMG_REGCLK_REG register to 1 and

switched off by setting it to 0. Then the selected clock is divided by a 16-bit configurable prescaler. The 16-bit

prescaler for MWDT is configured via the TIMG_WDT_CLK_PRESCALE field of TIMG_WDTCONFIG1_REG.

When TIMG_WDT_DIVCNT_RST field is set, the prescaler is reset and it can be re-configured at once.

In contrast, the clock source of RWDT is derived directly from RTC SLOW_CLK (see details in Chapter 6 Reset

and Clock).

MWDT and RWDT are enabled by setting the TIMG_WDT_EN and RTC_CNTL_WDT_EN fields respectively.

When enabled, the 32-bit counters of the watchdog will increment on each source clock cycle until the timeout

value of the current stage is reached (i.e. timeout of the current stage). When this occurs, the current counter

value is reset to zero and the next stage will become active. If a watchdog timer is fed by software, the timer will

return to stage 0 and reset its counter value to zero. Software can feed a watchdog timer by writing any value to

TIMG_WDTFEED_REG for MDWT and RTC_CNTL_RTC_WDT_FEED for RWDT.

12.2.2.2 Stages and Timeout Actions

Timer stages allow for a timer to have a series of different timeout values and corresponding timeout action.

When one stage times out, the timeout action is triggered, the counter value is reset to zero, and the next stage

becomes active. MWDT/ RWDT provide four stages (called stages 0 to 3). The watchdog timers will progress

through each stage in a loop (i.e. from stage 0 to 3, then back to stage 0).

Timeout values of each stage for MWDT are configured in TIMG_WDTCONFIGi_REG (where i ranges from 2 to 5),

whilst timeout values for RWDT are configured using RTC_CNTL_WDT_STGj_HOLD field (where j ranges from 0

to 3).

Please note that the timeout value of stage 0 for RWDT (Thold0) is determined by the combination of the

EFUSE_WDT_DELAY_SEL field of eFuse register EFUSE_RD_REPEAT_DATA0_REG and

RTC_CNTL_WDT_STG0_HOLD. The relationship is as follows:

Thold0 = RTC_CNTL_WDT_STG0_HOLD << (EFUSE_WDT_DELAY _SEL+ 1)

where << is a left-shift operator.

Upon the timeout of each stage, one of the following timeout actions will be executed:

Espressif Systems 245
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

12 Watchdog Timers (WDT) GoBack

Table 12­1. Timeout Actions

Timeout Action Description

Interrupt Trigger an interrupt

CPU reset Reset the CPU core

Core reset
Reset the main system (which includes MWDT, CPU, and all peripherals). The

power management unit and RTC peripherals will not be reset

System reset

Reset themain system, power management unit and RTC peripherals (see details

in Chapter 9 Low-power Management (RTC_CNTL)). This action is only available

in RWDT

Disabled No effect on the system

For MWDT, the timeout action of all stages is configured in TIMG_WDTCONFIG0_REG. Likewise for RWDT, the

timeout action is configured in RTC_CNTL_WDTCONFIG0_REG.

12.2.2.3 Write Protection

Watchdog timers are critical to detecting and handling erroneous system/software behavior, thus should not be

disabled easily (e.g. due to a misplaced register write). Therefore, MWDT and RWDT incorporate a write

protection mechanism that prevent the watchdogs from being disabled or tampered with due to an accidental

write. The write protection mechanism is implemented using a write-key field for each timer (TIMG_WDT_WKEY

for MWDT, RTC_CNTL_WDT_WKEY for RWDT). The value 0x50D83AA1 must be written to the watchdog timer’s

write-key field before any other register of the same watchdog timer can be changed. Any attempts to write to a

watchdog timer’s registers (other than the write-key field itself) whilst the write-key field’s value is not

0x50D83AA1 will be ignored. The recommended procedure for accessing a watchdog timer is as follows:

1. Disable the write protection by writing the value 0x50D83AA1 to the timer’s write-key field.

2. Make the required modification of the watchdog such as feeding or changing its configuration.

3. Re-enable write protection by writing any value other than 0x50D83AA1 to the timer’s write-key field.

12.2.2.4 Flash Boot Protection

During flash booting process, MWDT as well as RWDT, are automatically enabled. Stage 0 for the enabled

MWDT is automatically configured to reset the system upon timeout, known as core reset. Likewise, stage 0 for

RWDT is configured to system reset, which resets the main system and RTC when it times out. After booting,

TIMG_WDT_FLASHBOOT_MOD_EN and RTC_CNTL_WDT_FLASHBOOT_MOD_EN should be cleared to stop

the flash boot protection procedure for both MWDT and RWDT respectively. After this, MWDT and RWDT can be

configured by software.

12.3 Super Watchdog

Super watchdog (SWD) is an ultra-low-power circuit in analog domain that helps to prevent the system from

operating in a sub-optimal state and resets the system if required. SWD contains a watchdog circuit that needs

to be fed for at least once during its timeout period, which is slightly less than one second. About 100 ms before

watchdog timeout, it will also send out a WD_INTR signal as a request to remind the system to feed the

watchdog.

Espressif Systems 246
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

12 Watchdog Timers (WDT) GoBack

If the system doesn’t respond to SWD feed request and watchdog finally times out, SWD will generate a system

level signal SWD_RSTB to reset whole digital circuits on the chip.

The source of the clock for SWD is constant and can not be selected.

12.3.1 Features

SWD has the following features:

• Ultra-low power

• Interrupt to indicate that the SWD is about to time out

• Various dedicated methods for software to feed SWD, which enables SWD to monitor the working state of

the whole operating system

12.3.2 Super Watchdog Controller

12.3.2.1 Structure

Figure 12­3. Super Watchdog Controller Structure

12.3.2.2 Workflow

In normal state:

• SWD controller receives feed request from SWD.

• SWD controller can send an interrupt to main CPU or ULP-RISC-V.

• Main CPU can decide whether to feed SWD directly by setting RTC_CNTL_SWD_FEED, or send an

interrupt to ULP-RISC-V and ask ULP-RISC-V to feed SWD by setting RTC_CNTL_SWD_FEED.

• When trying to feed SWD, CPU or ULP-RISC-V needs to disable SWD controller’s write protection by

writing 0x8F1D312A to RTC_CNTL_SWD_WKEY. This prevents SWD from being fed by mistake when the

system is operating in sub-optimal state.

Espressif Systems 247
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

12 Watchdog Timers (WDT) GoBack

• If setting RTC_CNTL_SWD_AUTO_FEED_EN to 1, SWD controller can also feed SWD itself without any

interaction with CPU or ULP-RISC-V.

After reset:

• Check RTC_CNTL_RESET_CAUSE_PROCPU[5:0] for the cause of CPU reset.

If RTC_CNTL_RESET_CAUSE_PROCPU[5:0] == 0x12, it indicates that the cause is SWD reset.

• Set RTC_CNTL_SWD_RST_FLAG_CLR to clear the SWD reset flag.

12.4 Interrupts

For watchdog timer interrupts, please refer to Section 11.3.6 Interrupts in Chapter 11 Timer Group (TIMG).

12.5 Registers

MWDT registers are part of the timer submodule and are described in Section 11.5 Register Summary in Chapter

11 Timer Group (TIMG). RWDT and SWD registers are part of the RTC submodule and are described in Section

9.6 Register Summary in Chapter 9 Low-power Management (RTC_CNTL).

Espressif Systems 248
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

13 System Registers (SYSTEM)

13.1 Overview

The ESP8684 integrates a large number of peripherals, and enables the control of individual peripherals to

achieve optimal characteristics in performance-vs-power-consumption scenarios. Specifically, ESP8684 has

various system configuration registers that can be used for the chip’s clock management (clock gating), power

management, and the configuration of peripherals and core-system modules. This chapter lists all these system

registers and their functions.

13.2 Features

ESP8684 system registers can be used to control the following peripheral blocks and core modules:

• System and memory

• Clock

• Software interrupts

• Peripheral clock gating and reset

13.3 Function Description

13.3.1 System and Memory Registers

13.3.1.1 Internal Memory

The following registers can be used to control ESP8684’s internal memory:

• In register SYSCON_CLKGATE_FORCE_ON_REG:

– Setting different bits of the SYSCON_ROM_CLKGATE_FORCE_ON field forces on the clock gates of

different blocks of Internal ROM 0 and Internal ROM 1.

– Setting different bits of the SYSCON_SRAM_CLKGATE_FORCE_ON field forces on the clock gates of

different blocks of Internal SRAM.

– This means when the respective bits of this register are set to 1, the clock gate of the corresponding

ROM or SRAM blocks will always be on. Otherwise, the clock gate will turn on automatically when the

corresponding ROM or SRAM blocks are accessed and turn off automatically when the corresponding

ROM or SRAM blocks are not accessed. Therefore, it’s recommended to configure these bits to 0 to

lower power consumption.

• In register SYSCON_MEM_POWER_DOWN_REG:

– Setting different bits of the SYSCON_ROM_POWER_DOWN field sends different blocks of Internal

ROM 0 and Internal ROM 1 into retention state.

– Setting different bits of the SYSCON_SRAM_POWER_DOWN field sends different blocks of Internal

SRAM into retention state.

– The “Retention” state is a low-power state of a memory block. In this state, the memory block still

holds all the data stored but cannot be accessed, thus reducing the power consumption. Therefore,

Espressif Systems 249
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

you can send a certain block of memory into the retention state to reduce power consumption if you

know you are not going to use such memory block for some time.

• In register SYSCON_MEM_POWER_UP_REG:

– By default, all memory enters low-power state when the chip enters the Light-sleep mode.

– Setting different bits of the SYSCON_ROM_POWER_UP field forces different blocks of Internal ROM 0

and Internal ROM 1 to work as normal (do not enter the retention state) when the chip enters

Light-sleep.

– Setting different bits of the SYSCON_SRAM_POWER_UP field forces different blocks of Internal

SRAM to work as normal (do not enter the retention state) when the chip enters Light-sleep.

For detailed information about controlling different blocks using different controlling bits in the above-mentioned

registers, please see Table 13-1 below.

Table 13­1. Memory Controlling Bit

Memory
Instruction

Lowest Address

Instruction

Highest Address

Data Lowest

Address

Data Highest

Address

Controlling

Bit

ROM 0 0x4000_0000 0x4003_FFFF - - Bit0

ROM 1
0x4004_0000 0x4007_FFFF 0x3FF0_0000 0x3FF3_FFFF Bit1

0x4008_0000 0x4008_FFFF 0x3FF4_0000 0x3FF4_FFFF Bit2

SRAM Block 0 0x4037_C000 0x4037_FFFF - - Bit0

SRAM Block 1 0x4038_0000 0x4038_FFFF 0x3FCA_0000 0x3FCA_FFFF Bit1

SRAM Block 2 0x4039_0000 0x4039_FFFF 0x3FCB_0000 0x3FCB_FFFF Bit2

SRAM Block 3 0x403A_0000 0x403B_FFFF 0x3FCC_0000 0x3FCD_FFFF Bit3

For more information, please refer to Chapter 3 System and Memory.

13.3.1.2 External Memory

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG configures encryption and decryption

options of the external memory. For details, please refer to Chapter 17 External Memory Encryption and Decryption

(XTS_AES).

13.3.2 Clock Registers

The following registers are used to set clock sources and frequency. For more information, please refer to

Chapter 6 Reset and Clock.

• SYSTEM_CPU_PER_CONF_REG

• SYSTEM_SYSCLK_CONF_REG

13.3.3 Interrupt Signal Registers

The following registers are used for generating the interrupt signals (software interrupt), which then can be routed

to the CPU peripheral interrupts via the interrupt matrix. To be more specific, writing 1 to any of the following

registers generates an interrupt signal. Writing 0 clears the interrupt signal. Therefore, these registers can be

Espressif Systems 250
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

used by software to control interrupts. The following registers correspond to the interrupt source

SW_INTR_0/1/2/3. For more information, please refer to Chapter 8 Interrupt Matrix (INTMTRX).

• SYSTEM_CPU_INTR_FROM_CPU_0_REG

• SYSTEM_CPU_INTR_FROM_CPU_1_REG

• SYSTEM_CPU_INTR_FROM_CPU_2_REG

• SYSTEM_CPU_INTR_FROM_CPU_3_REG

13.3.4 Peripheral Clock Gating and Reset Registers

The following registers are used for controlling the clock gating and reset of different peripherals. Details can be

seen in Table 13-2.

• SYSTEM_CACHE_CONTROL_REG

• SYSTEM_PERIP_CLK_EN0_REG

• SYSTEM_PERIP_RST_EN0_REG

• SYSTEM_PERIP_CLK_EN1_REG

• SYSTEM_PERIP_RST_EN1_REG

Table 13­2. Clock Gating and Reset Bits

Component Clock Enabling Bit 1 Reset Controlling Bit 2� 3

CACHE Control SYSTEM_CACHE_CONTROL_REG

DCACHE SYSTEM_DCACHE_CLK_ON SYSTEM_DCACHE_RESET

ICACHE SYSTEM_ICACHE_CLK_ON SYSTEM_ICACHE_RESET

GDMA SYSTEM_GDMA_CTRL_REG

GDMA SYSTEM_GDMA_CLK_ON SYSTEM_GDMA_RESET

CPU SYSTEM_CPU_PERI_CLK_EN_REG SYSTEM_CPU_PERI_RST_EN_REG

DEBUG_ASSIST SYSTEM_CLK_EN_ASSIST_DEBUG SYSTEM_RST_EN_ASSIST_DEBUG

Peripherals SYSTEM_PERIP_CLK_EN0_REG SYSTEM_PERIP_RST_EN0_REG

SPI0 / SPI1 SYSTEM_SPI01_CLK_EN SYSTEM_SPI01_RST

UART0 SYSTEM_UART_CLK_EN SYSTEM_UART_RST

UART1 SYSTEM_UART1_CLK_EN SYSTEM_UART1_RST

SPI2 SYSTEM_SPI2_CLK_EN SYSTEM_SPI2_RST

I2C0 SYSTEM_I2C_EXT0_CLK_EN SYSTEM_I2C_EXT0_RST

LED PWM Controller SYSTEM_LEDC_CLK_EN SYSTEM_LEDC_RST

Timer Group0 SYSTEM_TIMERGROUP_CLK_EN SYSTEM_TIMERGROUP_RST

UART MEM SYSTEM_UART_MEM_CLK_EN 4 SYSTEM_UART_MEM_RST

APB SARADC SYSTEM_APB_SARADC_CLK_EN SYSTEM_APB_SARADC_RST

System Timer SYSTEM_SYSTIMER_CLK_EN SYSTEM_SYSTIMER_RST

ADC Controller SYSTEM_ADC2_ARB_CLK_EN SYSTEM_ADC2_ARB_RST

Accelerators SYSTEM_PERIP_CLK_EN1_REG SYSTEM_PERIP_RST_EN1_REG

ECC Accelerator SYSTEM_CRYPTO_ECC_CLK_EN SYSTEM_CRYPTO_ECC_RST

SHA Accelerator SYSTEM_CRYPTO_SHA_CLK_EN SYSTEM_CRYPTO_SHA_RST

Cont’d on next page

Espressif Systems 251
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

Table 13­2 – cont’d from previous page

Component Clock Enabling Bit 1 Reset Controlling Bit 2� 3

DMA SYSTEM_DMA_CLK_EN SYSTEM_DMA_RST5

TSENS SYSTEM_TSENS_CLK_EN SYSTEM_TSENS_RST

1 Set the clock enabling bit to 1 to enable the clock, and to 0 to disable the clock.
2 Set the reset controlling bit to 1 to reset a peripheral, and to 0 to disable the reset.
3 Reset registers cannot be cleared by hardware. Therefore, SW reset clear is required after setting the

reset registers.
4 UART memory is shared by all UART peripherals, meaning having any active UART peripherals will

prevent the UART memory from entering the clock-gated state.
5 When DMA is required for peripheral communications, for example, SPI and SHA, DMA clock should

also be enabled.

Espressif Systems 252
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

13.4 Register Summary

The addresses in this section are relative to the base address of System Registers provided in Table 3-3 in

Chapter 3 System and Memory.

Name Description Address Access

Peripheral Clock Control Registers

SYSTEM_CPU_PERI_CLK_EN_REG CPU peripheral clock enable register 0x0000 Varies

SYSTEM_CPU_PERI_RST_EN_REG CPU peripheral reset register 0x0004 R/W

SYSTEM_PERIP_CLK_EN0_REG SYSTEM peripheral clock enable register 1 0x0010 R/W

SYSTEM_PERIP_CLK_EN1_REG SYSTEM peripheral clock enable register 1 0x0014 R/W

SYSTEM_PERIP_RST_EN0_REG SYSTEM peripheral reset register 0 0x0018 R/W

SYSTEM_PERIP_RST_EN1_REG SYSTEM peripheral reset register 1 0x001C R/W

SYSTEM_GDMA_CTRL_REG GDMA clock control register 0x003C R/W

SYSTEM_CACHE_CONTROL_REG Cache clock control register 0x0040 R/W

Clock Configuration Registers

SYSTEM_CPU_PER_CONF_REG CPU clock configuration register 0x0008 Varies

SYSTEM_SYSCLK_CONF_REG System clock configuration register 0x0058 R/W

CPU Interrupt Control Registers

SYSTEM_CPU_INTR_FROM_CPU_0_REG CPU interrupt control register 0 0x0028 R/W

SYSTEM_CPU_INTR_FROM_CPU_1_REG CPU interrupt control register 1 0x002C R/W

SYSTEM_CPU_INTR_FROM_CPU_2_REG CPU interrupt control register 2 0x0030 R/W

SYSTEM_CPU_INTR_FROM_CPU_3_REG CPU interrupt control register 3 0x0034 R/W

System and Memory Control Registers

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_

DECRYPT_CONTROL_REG

External memory encryption and decryption

control register

0x0044 R/W

Clock Gate Control Registers

SYSTEM_CLOCK_GATE_REG Clock gate control register 0x0054 R/W

Date Register

SYSTEM_DATE_REG Version register 0x0FFC R/W

The addresses in this section are relative to the base address of APB Controller provided in Table 3-3 in Chapter

3 System and Memory.

Name Description Address Access

Configuration Register

SYSCON_CLKGATE_FORCE_ON_REG Internal memory clock gate enable register 0x00A4 R/W

SYSCON_MEM_POWER_DOWN_REG Internal memory control register 0x00A8 R/W

SYSCON_MEM_POWER_UP_REG Internal memory control register 0x00AC R/W

Espressif Systems 253
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

13.5 Registers

The addresses in this section are relative to the base address of System Registers provided in Table 3-3 in

Chapter 3 System and Memory.

Register 13.1. SYSTEM_CPU_PERI_CLK_EN_REG (0x0000)

(re
se
rve
d)

0 0

31 7

SY
ST
EM
_C
LK
_E
N_
AS
SI
ST
_D
EB
UG

0

6

(re
se
rve
d)

0 0 0 0 0 0

5 0

Reset

SYSTEM_CLK_EN_ASSIST_DEBUG Set this bit to enable ASSIST_DEBUG clock. Please see Chap-

ter 14 Debug Assistant (ASSIST_DEBUG) for more information about ASSIST_DEBUG. (R/W)

Register 13.2. SYSTEM_CPU_PERI_RST_EN_REG (0x0004)

(re
se
rve
d)

0 0

31 7

SY
ST
EM
_R
ST
_E
N_
AS
SI
ST
_D
EB
UG

1

6

(re
se
rve
d)

0 0 0 0 0 0

5 0

Reset

SYSTEM_RST_EN_ASSIST_DEBUG Set this bit to reset ASSIST_DEBUG. Please see Chapter 14

Debug Assistant (ASSIST_DEBUG) for more information about ASSIST_DEBUG. (R/W)

Espressif Systems 254
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

Register 13.3. SYSTEM_PERIP_CLK_EN0_REG (0x0010)

(re
se
rve
d)

0

31

SY
ST
EM
_A
DC
2_
AR
B_
CL
K_
EN

1

30

SY
ST
EM
_S
YS
TIM

ER
_C
LK
_E
N

1

29

SY
ST
EM
_A
PB
_S
AR
AD
C_
CL
K_
EN

1

28

(re
se
rve
d)

0 0 0

27 25

SY
ST
EM
_U
AR
T_
M
EM
_C
LK
_E
N

1

24

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

23 14

SY
ST
EM
_T
IM
ER
GR
OU
P_
CL
K_
EN

1

13

(re
se
rve
d)

0

12

SY
ST
EM
_L
ED
C_
CL
K_
EN

0

11

(re
se
rve
d)

0 0 0

10 8

SY
ST
EM
_I2
C_
EX
T0
_C
LK
_E
N

0

7

SY
ST
EM
_S
PI
2_
CL
K_
EN

1

6

SY
ST
EM
_U
AR
T1
_C
LK
_E
N

1

5

(re
se
rve
d)

0 0

4 3

SY
ST
EM
_U
AR
T_
CL
K_
EN

1

2

SY
ST
EM
_S
PI
01
_C
LK
_E
N

1

1

(re
se
rve
d)

0

0

Reset

SYSTEM_SPI01_CLK_EN Set this bit to enable SPI0/SPI1 clock. (R/W)

SYSTEM_UART_CLK_EN Set this bit to enable UART clock. (R/W)

SYSTEM_UART1_CLK_EN Set this bit to enable UART1 clock. (R/W)

SYSTEM_SPI2_CLK_EN Set this bit to enable SPI2 clock. (R/W)

SYSTEM_I2C_EXT0_CLK_EN Set this bit to enable I2C_EXT0 clock. (R/W)

SYSTEM_LEDC_CLK_EN Set this bit to enable LEDC clock. (R/W)

SYSTEM_TIMERGROUP_CLK_EN Set this bit to enable TIMERGROUP clock. (R/W)

SYSTEM_UART_MEM_CLK_EN Set this bit to enable UART_MEM clock. (R/W)

SYSTEM_APB_SARADC_CLK_EN Set this bit to enable APB_SARADC clock. (R/W)

SYSTEM_SYSTIMER_CLK_EN Set this bit to enable SYSTEMTIMER clock. (R/W)

SYSTEM_ADC2_ARB_CLK_EN Set this bit to enable ADC2_ARB clock. (R/W)

Register 13.4. SYSTEM_PERIP_CLK_EN1_REG (0x0014)

(re
se
rve
d)

0 0

31 11

SY
ST
EM
_T
SE
NS
_C
LK
_E
N

0

10

(re
se
rve
d)

0 0 0

9 7

SY
ST
EM
_D
M
A_
CL
K_
EN

0

6

(re
se
rve
d)

0 0 0

5 3

SY
ST
EM
_C
RY
PT
O_
SH
A_
CL
K_
EN

0

2

SY
ST
EM
_C
RY
PT
O_
EC
C_
CL
K_
EN

0

1

(re
se
rve
d)

0

0

Reset

SYSTEM_CRYPTO_ECC_CLK_EN Set this bit to enable ECC clock. (R/W)

SYSTEM_CRYPTO_SHA_CLK_EN Set this bit to enable SHA clock. (R/W)

SYSTEM_DMA_CLK_EN Set this bit to enable DMA clock. (R/W)

SYSTEM_TSENS_CLK_EN Set this bit to enable TSENS clock. (R/W)

Espressif Systems 255
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

Register 13.5. SYSTEM_PERIP_RST_EN0_REG (0x0018)

(re
se
rve
d)

0

31

SY
ST
EM
_A
DC
2_
AR
B_
RS
T

0

30

SY
ST
EM
_S
YS
TIM

ER
_R
ST

0

29

SY
ST
EM
_A
PB
_S
AR
AD
C_
RS
T

0

28

(re
se
rve
d)

0 0 0

27 25

SY
ST
EM
_U
AR
T_
M
EM
_R
ST

0

24

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

23 14

SY
ST
EM
_T
IM
ER
GR
OU
P_
RS
T

0

13

(re
se
rve
d)

0

12

SY
ST
EM
_L
ED
C_
RS
T

0

11

(re
se
rve
d)

0 0 0

10 8

SY
ST
EM
_I2
C_
EX
T0
_R
ST

0

7

SY
ST
EM
_S
PI
2_
RS
T

0

6

SY
ST
EM
_U
AR
T1
_R
ST

0

5

(re
se
rve
d)

0 0

4 3

SY
ST
EM
_U
AR
T_
RS
T

0

2

SY
ST
EM
_S
PI
01
_R
ST

0

1

(re
se
rve
d)

0

0

Reset

SYSTEM_SPI01_RST Set this bit to reset SPI0/SPI1. (R/W)

SYSTEM_UART_RST Set this bit to reset UART. (R/W)

SYSTEM_UART1_RST Set this bit to reset UART1. (R/W)

SYSTEM_SPI2_RST Set this bit to reset SPI2. (R/W)

SYSTEM_I2C_EXT0_RST Set this bit to reset I2C_EXT0. (R/W)

SYSTEM_LEDC_RST Set this bit to reset LEDC. (R/W)

SYSTEM_TIMERGROUP_RST Set this bit to reset TIMERGROUP. (R/W)

SYSTEM_UART_MEM_RST Set this bit to reset UART_MEM. (R/W)

SYSTEM_APB_SARADC_RST Set this bit to reset APB_SARADC. (R/W)

SYSTEM_SYSTIMER_RST Set this bit to reset SYSTIMER. (R/W)

SYSTEM_ADC2_ARB_RST Set this bit to reset ADC2_ARB. (R/W)

Register 13.6. SYSTEM_PERIP_RST_EN1_REG (0x001C)

(re
se
rve
d)

0 0

31 11

SY
ST
EM
_T
SE
NS
_R
ST

0

10

(re
se
rve
d)

0 0 0

9 7

SY
ST
EM
_D
M
A_
RS
T

1

6

(re
se
rve
d)

0 0 0

5 3

SY
ST
EM
_C
RY
PT
O_
SH
A_
RS
T

1

2

SY
ST
EM
_C
RY
PT
O_
EC
C_
RS
T

1

1

(re
se
rve
d)

0

0

Reset

SYSTEM_CRYPTO_ECC_RST Set this bit to reset CRYPTO_ECC. (R/W)

SYSTEM_CRYPTO_SHA_RST Set this bit to reset CRYPTO_SHA. (R/W)

SYSTEM_DMA_RST Set this bit to reset DMA. (R/W)

SYSTEM_TSENS_RST Set this bit to reset TSENS. (R/W)

Espressif Systems 256
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

Register 13.7. SYSTEM_GDMA_CTRL_REG (0x003C)

(re
se
rve
d)

0 0

31 2

SY
ST
EM
_G
DM
A_
RE
SE
T

0

1

SY
ST
EM
_G
DM
A_
CL
K_
ON

1

0

Reset

SYSTEM_GDMA_CLK_ON Set this bit to enable GDMA clock. (R/W)

SYSTEM_GDMA_RESET Set this bit to reset GDMA. (R/W)

Register 13.8. SYSTEM_CACHE_CONTROL_REG (0x0040)

(re
se
rve
d)

0 0

31 4

SY
ST
EM
_D
CA
CH
E_
RE
SE
T

0

3

SY
ST
EM
_D
CA
CH
E_
CL
K_
ON

1

2

SY
ST
EM
_IC
AC
HE
_R
ES
ET

0

1

SY
ST
EM
_IC
AC
HE
_C
LK
_O
N

1

0

Reset

SYSTEM_ICACHE_CLK_ON Set this bit to enable i-cache clock. (R/W)

SYSTEM_ICACHE_RESET Set this bit to reset i-cache. (R/W)

SYSTEM_DCACHE_CLK_ON Set this bit to enable d-cache clock. (R/W)

SYSTEM_DCACHE_RESET Set this bit to reset d-cache. (R/W)

Espressif Systems 257
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

Register 13.9. SYSTEM_CPU_PER_CONF_REG (0x0008)

(re
se
rve
d)

0 0

31 8

SY
ST
EM
_C
PU
_W
AI
TI_
DE
LA
Y_
NU
M

0

7 4

SY
ST
EM
_C
PU
_W
AI
T_
M
OD
E_
FO
RC
E_
ON

1

3

(re
se
rve
d)

0

2

SY
ST
EM
_C
PU
PE
RI
OD
_S
EL

0

1 0

Reset

SYSTEM_CPUPERIOD_SEL Set this field to select the CPU clock frequency. For details, please refer

to Table 6-4 in Chapter 6 Reset and Clock. (R/W)

SYSTEM_CPU_WAIT_MODE_FORCE_ON Set this bit to force on the clock gate of CPU wait mode.

Usually, after executing the WFI (Wait-for-Interrupt) instruction, CPU enters the wait mode, during

which the clock gate of CPU is turned off until any interrupts occur. In this way, power consumption

is saved. However, if this bit is set, the clock gate of CPU is always on and will not be turned off

by the WFI instruction. (R/W)

SYSTEM_CPU_WAITI_DELAY_NUM Set the number of delay cycles to turn off the CPU clock gate

after the CPU enters the wait mode because of a WFI instruction. (R/W)

Register 13.10. SYSTEM_SYSCLK_CONF_REG (0x0058)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 19

SY
ST
EM
_S
OC
_C
LK
_S
EL

0

11 10

SY
ST
EM
_P
RE
_D
IV_
CN
T

0x1

9 0

Reset

SYSTEM_PRE_DIV_CNT This field is used to set the count of prescaler of XTAL_CLK. For details,

please refer to Table 6-3 in Chapter 6 Reset and Clock. (R/W)

SYSTEM_SOC_CLK_SEL This field is used to select SOC clock. For details, please refer to Table

6-4 in Chapter 6 Reset and Clock. (R/W)

SYSTEM_CLK_XTAL_FREQ This field is used to read XTAL frequency in MHz. (RO)

SYSTEM_CLK_DIV_EN This field is used to set clock divider. (RO)

Espressif Systems 258
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

Register 13.11. SYSTEM_CPU_INTR_FROM_CPU_0_REG (0x0028)

(re
se
rve
d)

0 0

31 1

SY
ST
EM
_C
PU
_IN
TR
_F
RO
M
_C
PU
_0

0

0

Reset

SYSTEM_CPU_INTR_FROM_CPU_0 Set this bit to generate CPU interrupt 0. This bit needs to be

reset by software in the ISR process. (R/W)

Register 13.12. SYSTEM_CPU_INTR_FROM_CPU_1_REG (0x002C)

(re
se
rve
d)

0 0

31 1

SY
ST
EM
_C
PU
_IN
TR
_F
RO
M
_C
PU
_1

0

0

Reset

SYSTEM_CPU_INTR_FROM_CPU_1 Set this bit to generate CPU interrupt 1. This bit needs to be

reset by software in the ISR process. (R/W)

Register 13.13. SYSTEM_CPU_INTR_FROM_CPU_2_REG (0x0030)

(re
se
rve
d)

0 0

31 1

SY
ST
EM
_C
PU
_IN
TR
_F
RO
M
_C
PU
_2

0

0

Reset

SYSTEM_CPU_INTR_FROM_CPU_2 Set this bit to generate CPU interrupt 2. This bit needs to be

reset by software in the ISR process. (R/W)

Espressif Systems 259
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

Register 13.14. SYSTEM_CPU_INTR_FROM_CPU_3_REG (0x0034)

(re
se
rve
d)

0 0

31 1

SY
ST
EM
_C
PU
_IN
TR
_F
RO
M
_C
PU
_3

0

0

Reset

SYSTEM_CPU_INTR_FROM_CPU_3 Set this bit to generate CPU interrupt 3. This bit needs to be

reset by software in the ISR process. (R/W)

Register 13.15. SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG (0x0044)

(re
se
rve
d)

0 0

31 4

SY
ST
EM
_E
NA
BL
E_
DO
W
NL
OA
D_
M
AN
UA
L_
EN
CR
YP
T

0

3

SY
ST
EM
_E
NA
BL
E_
DO
W
NL
OA
D_
G0
CB
_D
EC
RY
PT

0

2

SY
ST
EM
_E
NA
BL
E_
DO
W
NL
OA
D_
DB
_E
NC
RY
PT

0

1

SY
ST
EM
_E
NA
BL
E_
SP
I_M

AN
UA
L_
EN
CR
YP
T

0

0

Reset

SYSTEM_ENABLE_SPI_MANUAL_ENCRYPT Set this bit to enable Manual Encryption under SPI

Boot mode. (R/W)

SYSTEM_ENABLE_DOWNLOAD_DB_ENCRYPT Set this bit to enable Auto Encryption under

Download Boot mode. (R/W)

SYSTEM_ENABLE_DOWNLOAD_G0CB_DECRYPT Set this bit to enable Auto Decryption under

Download Boot mode. (R/W)

SYSTEM_ENABLE_DOWNLOAD_MANUAL_ENCRYPT Set this bit to enable Manual Encryption

under Download Boot mode. (R/W)

Register 13.16. SYSTEM_CLOCK_GATE_REG (0x0054)

(re
se
rve
d)

0 0

31 1

SY
ST
EM
_C
LK
_E
N

1

0

Reset

SYSTEM_CLK_EN Set this bit to enable the system clock. (R/W)

Espressif Systems 260
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

Register 13.17. SYSTEM_DATE_REG (0x0FFC)

(re
se
rve
d)

0 0 0 0

31 28

SY
ST
EM
_D
AT
E

0x2108190

27 0

Reset

SYSTEM_DATE Version control register. (R/W)

The addresses in this section are relative to the base address of APB Controller provided in Table 3-3 in Chapter

3 System and Memory.

Register 13.18. SYSCON_CLKGATE_FORCE_ON_REG (0x00A4)

(re
se
rve
d)

0 0

31 7

SY
SC
ON
_S
RA
M
_C
LK
GA
TE
_F
OR
CE
_O
N

0xf

6 3

SY
SC
ON
_R
OM

_C
LK
GA
TE
_F
OR
CE
_O
N

7

2 0

Reset

SYSCON_ROM_CLKGATE_FORCE_ON Set this field to configure the ROM clock gate to be always

on; Set 0 to configure the clock gate to turn on automatically when ROM is accessed and turn off

automatically when ROM is not accessed. (R/W)

SYSCON_SRAM_CLKGATE_FORCE_ON Set this field to configure the SRAM clock gate to be al-

ways on; Set 0 to configure the clock gate to turn on automatically when SRAM is accessed and

turn off automatically when SRAM is not accessed. (R/W)

Espressif Systems 261
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

13 System Registers (SYSTEM) GoBack

Register 13.19. SYSCON_MEM_POWER_DOWN_REG (0x00A8)

(re
se
rve
d)

0 0

31 7

SY
SC
ON
_S
RA
M
_P
OW

ER
_D
OW

N

0

6 3

SY
SC
ON
_R
OM

_P
OW

ER
_D
OW

N

0

2 0

Reset

SYSCON_ROM_POWER_DOWN Set this field to send the internal ROM into retention state. (R/W)

SYSCON_SRAM_POWER_DOWN Set this field to send the internal SRAM into retention state. (R/W)

Register 13.20. SYSCON_MEM_POWER_UP_REG (0x00AC)

(re
se
rve
d)

0 0

31 7

SY
SC
ON
_S
RA
M
_P
OW

ER
_U
P

0xf

6 3

SY
SC
ON
_R
OM

_P
OW

ER
_U
P

7

2 0

Reset

SYSCON_ROM_POWER_UP Set this field to force the internal ROM to work as normal (do not enter

the retention state) when the chip enters light sleep. (R/W)

SYSCON_SRAM_POWER_UP Set this field to force the internal SRAM to work as normal (do not

enter the retention state) when the chip enters light sleep. (R/W)

Espressif Systems 262
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

14 Debug Assistant (ASSIST_DEBUG) GoBack

14 Debug Assistant (ASSIST_DEBUG)

14.1 Overview

Debug Assistant is an auxiliary module that features a set of functions to help locate bugs and issues during

software debugging.

14.2 Features

The Debug Assistant module has the following features:

• Stack pointer (SP) monitoring

• Program counter (PC) logging before the CPU resets occurs

• CPU debugging status logging

14.3 Functional Description

14.3.1 SP Monitoring

The Debug Assistant module can monitor the SP so as to prevent stack overflow or erroneous push/pop. When

the stack pointer exceeds the minimum or maximum thresholds, the Debug Assistant will record the PC’s current

value and generate an interrupt. Users can then read the recorded PC value to determine which instruction

caused the out of bounds access. The minimum and maximum thresholds must be configured by

software.

14.3.2 PC Logging

In some cases, software developers want to know the PC at the last CPU reset. For instance, when the program

is stuck and can only be reset, the developer may want to know where the program got stuck in order to debug.

The Debug Assistant module can record the PC at the last CPU reset, which can be then read for software

debugging.

14.3.3 CPU Debugging Status Logging

The Debug Assistant module records the CPU debugging status by providing a set of read-only registers. Please

refer to 1 ESP-RISC-V CPU for more information.

14.4 Recommended Operation

14.4.1 SP Monitoring

SP bounds check monitoring:

• SP exceeds the upper bound address

• SP exceeds the lower bound address

The configuration process for SP monitoring is as follows:

Espressif Systems 263
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

14 Debug Assistant (ASSIST_DEBUG) GoBack

1. Configure the monitored SP threshold with ASSIST_DEBUG_CORE_0_SP_MIN_REG and

ASSIST_DEBUG_CORE_0_SP_MAX_REG.

2. Configure interrupts.

• Configure ASSIST_DEBUG_CORE_0_INTR_EN_REG to enable the interrupt of a monitoring mode.

• Read ASSIST_DEBUG_CORE_0_INTR_RAW_REG to get the interrupt status of a monitoring mode.

• Configure ASSIST_DEBUG_CORE_0_INTR_CLR_REG to clear their interrupts.

3. Configure ASSIST_DEBUG_CORE_0_SP_MONITOR_EN_REG to enable the monitoring mode(s). Various

monitoring modes can be enabled at the same time.

Read ASSIST_DEBUG_CORE_0_SP_PC to get the PC value when an interrupt is triggered.

The interrupt of the Debug Assistant module corresponds to the interrupt source ASSIST_DEBUG_INTR of the

interrupt matrix. For how to map the interrupt source to the CPU interrupt, please refer to the 8 Interrupt Matrix

(INTMTRX).

14.4.2 PC Logging Configuration Process

The CPU sends PC value to Debug Assistant. Only when ASSIST_DEBUG_CORE_0_RCD_PDEBUGEN is 1, the

PC is valid, otherwise, it is always 0. Only when ASSIST_DEBUG_CORE_0_RCD_RECORDEN is 1,

ASSIST_DEBUG_CORE_0_RCD_PDEBUGPC_REG samples the CPU’s PC, otherwise, it keeps the original

value.

The description of ASSIST_DEBUG_CORE_0_RCD_EN_REG and

ASSIST_DEBUG_CORE_0_RCD_PDEBUGPC_REG can be found in section 14.8 and 14.9.

When the CPU resets, ASSIST_DEBUG_CORE_0_RCD_EN_REG will reset, while

ASSIST_DEBUG_CORE_0_RCD_PDEBUGPC_REG will not. Therefore, the latter will keep the PC value at the

CPU reset. ASSIST_DEBUG_CORE_0_RCD_PDEBUGSP_REG records the SP value at the reset.

Espressif Systems 264
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

14 Debug Assistant (ASSIST_DEBUG) GoBack

14.5 Register Summary

The addresses in this section are relative to the Debug Assistant base address provided in Table 3-3 in Chapter 3

System and Memory.

Name Description Address Access

Monitor configuration registers

ASSIST_DEBUG_CORE_0_SP_MONITOR_EN_REG Configure monitoring

modes

0x0000 R/W

ASSIST_DEBUG_CORE_0_SP_MIN_REG Configure stack min value 0x0010 R/W

ASSIST_DEBUG_CORE_0_SP_MAX_REG Configure stack max value 0x0014 R/W

ASSIST_DEBUG_CORE_0_SP_PC_REG Store PC value when an in-

terrupt occurs

0x0018 RO

Interrupt configuration registers

ASSIST_DEBUG_CORE_0_INTR_RAW_REG Store interrupt status of

monitoring modes

0x0004 RO

ASSIST_DEBUG_CORE_0_INTR_EN_REG Enable interrupt of moni-

toring modes

0x0008 R/W

ASSIST_DEBUG_CORE_0_INTR_CLR_REG Clear interrupt of monitor-

ing modes

0x000C WT

PC logging configuration register

ASSIST_DEBUG_CORE_0_RCD_EN_REG Enable PC logging 0x001C R/W

PC logging status registers

ASSIST_DEBUG_CORE_0_RCD_PDEBUGPC_REG Record PC value 0x0020 RO

ASSIST_DEBUG_CORE_0_RCD_PDEBUGSP_REG Record SP value 0x0024 RO

CPU status registers

ASSIST_DEBUG_CORE_0_LASTPC_BEFORE_EXCEPTION_REG Store PC of the last com-

mand before CPU enters

exception

0x0028 RO

ASSIST_DEBUG_CORE_0_DEBUG_MODE_REG Store CPU debug mode

status

0x002C RO

Clock gate register

ASSIST_DEBUG_CLOCK_GATE_REG Clock gate register 0x0030 R/W

Version register

ASSIST_DEBUG_DATE_REG Version control register 0x01FC R/W

Espressif Systems 265
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

14 Debug Assistant (ASSIST_DEBUG) GoBack

14.6 Registers

The addresses in this section are relative to the Debug Assistant base address provided in Table 3-3 in Chapter 3

System and Memory.

Register 14.1. ASSIST_DEBUG_CORE_0_SP_MONITOR_EN_REG (0x0000)

(re
se
rv
ed
)

0 0

31 2

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
SP

_S
PI
LL
_M

AX
_M

O
N
IT
O
R
_E
N

0

1

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
SP

_S
PI
LL
_M

IN
_M

O
N
IT
O
R
_E
N

0

0

Reset

ASSIST_DEBUG_CORE_0_SP_SPILL_MIN_MONITOR_EN Set 1 to enable SP underflow monitor.

(R/W)

ASSIST_DEBUG_CORE_0_SP_SPILL_MAX_MONITOR_EN Set 1 to enable SP overflow monitor.

(R/W)

Register 14.2. ASSIST_DEBUG_CORE_0_SP_MIN_REG (0x0010)

AS
SI
ST
_D
EB
UG
_C
OR
E_
0_
SP
_M
IN

0

31 0

Reset

ASSIST_DEBUG_CORE_0_SP_MIN Records the lower bound address of SP. (R/W)

Espressif Systems 266
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

14 Debug Assistant (ASSIST_DEBUG) GoBack

Register 14.3. ASSIST_DEBUG_CORE_0_SP_MAX_REG (0x0014)

AS
SI
ST
_D
EB
UG
_C
OR
E_
0_
SP
_M
AX

0xffffffff

31 0

Reset

ASSIST_DEBUG_CORE_0_SP_MAX Records the upper bound address of SP. (R/W)

Register 14.4. ASSIST_DEBUG_CORE_0_SP_PC_REG (0x0018)

AS
SI
ST
_D
EB
UG
_C
OR
E_
0_
SP
_P
C

0

31 0

Reset

ASSIST_DEBUG_CORE_0_SP_PC Records the PC value during stack monitoring. (RO)

Espressif Systems 267
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

14 Debug Assistant (ASSIST_DEBUG) GoBack

Register 14.5. ASSIST_DEBUG_CORE_0_INTR_RAW_REG (0x0004)

(re
se
rv
ed
)

0 0

31 2

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
SP

_S
PI
LL
_M

AX
_R
AW

0

1

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
SP

_S
PI
LL
_M

IN
_R
AW

0

0

Reset

ASSIST_DEBUG_CORE_0_SP_SPILL_MIN_RAW Stores the interrupt status of SP underflow mon-

itoring. (RO)

ASSIST_DEBUG_CORE_0_SP_SPILL_MAX_RAW Stores the interrupt status of SP overflow moni-

toring. (RO)

Register 14.6. ASSIST_DEBUG_CORE_0_INTR_EN_REG (0x0008)

(re
se
rv
ed
)

0 0

31 2

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
SP

_S
PI
LL
_M

AX
_E
N

0

1

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
SP

_S
PI
LL
_M

IN
_E
N

0

0

Reset

ASSIST_DEBUG_CORE_0_SP_SPILL_MIN_EN SP underflow monitor interrupt enable bit, 1: inter-

rupt enabled, 0: interrupt disabled. (R/W)

ASSIST_DEBUG_CORE_0_SP_SPILL_MAX_EN SP overflow monitor interrupt enable bit, 1: inter-

rupt enabled, 0: interrupt disabled. (R/W)

Espressif Systems 268
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

14 Debug Assistant (ASSIST_DEBUG) GoBack

Register 14.7. ASSIST_DEBUG_CORE_0_INTR_CLR_REG (0x000C)

(re
se
rv
ed
)

0 0

31 2

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
SP

_S
PI
LL
_M

AX
_C

LR

0

1

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
SP

_S
PI
LL
_M

IN
_C

LR

0

0

Reset

ASSIST_DEBUG_CORE_0_SP_SPILL_MIN_CLR Set 1 to clear SP underflow monitor interrupt.

(WT)

ASSIST_DEBUG_CORE_0_SP_SPILL_MAX_CLR Set 1 to clear SP overflowmonitor interrupt. (WT)

Register 14.8. ASSIST_DEBUG_CORE_0_RCD_EN_REG (0x001C)

(re
se
rv
ed
)

0 0

31 2

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
R
C
D
_P
D
EB

U
G
EN

0

1

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
R
C
D
_R
EC

O
R
D
EN

0

0

Reset

ASSIST_DEBUG_CORE_0_RCD_RECORDEN Set 1 to enable AS-

SIST_DEBUG_CORE_0_RCD_PDEBUGPC_REG to record PC in real time. (R/W)

ASSIST_DEBUG_CORE_0_RCD_PDEBUGEN Set 1 to enable CPU debug function. The CPU out-

puts PC only when this field is set to 1. (R/W)

Espressif Systems 269
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

14 Debug Assistant (ASSIST_DEBUG) GoBack

Register 14.9. ASSIST_DEBUG_CORE_0_RCD_PDEBUGPC_REG (0x0020)

AS
SI
ST
_D
EB
UG
_C
OR
E_
0_
RC
D_
PD
EB
UG
PC

0x000000

31 0

Reset

ASSIST_DEBUG_CORE_0_RCD_PDEBUGPC Records the PC value at CPU reset. (RO)

Register 14.10. ASSIST_DEBUG_CORE_0_RCD_PDEBUGSP_REG (0x0024)

AS
SI
ST
_D
EB
UG
_C
OR
E_
0_
RC
D_
PD
EB
UG
SP

0x000000

31 0

Reset

ASSIST_DEBUG_CORE_0_RCD_PDEBUGSP Records SP. (RO)

Register 14.11. ASSIST_DEBUG_CORE_0_LASTPC_BEFORE_EXCEPTION_REG (0x0028)

AS
SI
ST
_D
EB
UG
_C
OR
E_
0_
LA
ST
PC
_B
EF
OR
E_
EX
C

0

31 0

Reset

ASSIST_DEBUG_CORE_0_LASTPC_BEFORE_EXC Records the PC of the last instruction before

the CPU enters exception. (RO)

Espressif Systems 270
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

14 Debug Assistant (ASSIST_DEBUG) GoBack

Register 14.12. ASSIST_DEBUG_CORE_0_DEBUG_MODE_REG (0x002C)

(re
se
rv
ed
)

0 0

31 2

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
D
EB

U
G
_M

O
D
U
LE
_A
C
TI
VE

0

1

AS
SI
ST

_D
EB

U
G
_C

O
R
E_
0_
D
EB

U
G
_M

O
D
E

0

0

Reset

ASSIST_DEBUG_CORE_0_DEBUG_MODE Indicates whether the RISC-V CPU is in debug mode.

1: in debug mode; 0: not in debug mode. (RO)

ASSIST_DEBUG_CORE_0_DEBUG_MODULE_ACTIVE Indicates the status of the RISC-V CPU de-

bug module. 1: active status; 0: inactive status. (RO)

Register 14.13. ASSIST_DEBUG_CLOCK_GATE_REG (0x0030)

(re
se
rve
d)

0 0

31 1

AS
SI
ST
_D
EB
UG
_C
LK
_E
N

1

0

Reset

ASSIST_DEBUG_CLK_EN Clock gate register. (R/W)

Register 14.14. ASSIST_DEBUG_DATE_REG (0x01FC)

(re
se
rve
d)

0 0 0 0

31 28

AS
SI
ST
_D
EB
UG
_D
AT
E

0x2106020

27 0

Reset

ASSIST_DEBUG_DATE Version control register. (R/W)

Espressif Systems 271
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

15 ECC Hardware Accelerator (ECC) GoBack

15 ECC Hardware Accelerator (ECC)

15.1 Introduction

Elliptic Curve Cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of

elliptic curves. ECC allows smaller keys compared to RSA cryptography while providing equivalent

security.

ESP8684’s ECC Accelerator can complete various calculation based on different elliptic curves, thus accelerating

ECC algorithm and ECC-derived algorithms (such as ECDSA).

15.2 Features

ESP8684’s ECC Accelerator supports:

• Two different elliptic curves, namely P-192 and P-256 defined in FIPS 186-3

• Seven working modes

• Interrupt upon completion of calculation

15.3 Terminology

To better illustrate the ECC accelerator, we will first introduce the terminology used in this chapter.

15.3.1 ECC Basics

15.3.1.1 Elliptic Curve and Points on the Curves

The ECC algorithm is based on elliptic curves over prime fields, which can be represented as:

y2 = x3 + ax+ b mod p

where,

• p is a prime number.

• a and b are two non-negative integers smaller than p.

• (x, y) is a point on the curve satisfying the representation.

15.3.1.2 Affine Coordinates and Jacobian Coordinates

An elliptic curve can be represented as below:

• In affine coordinates:

y2 = x3 + ax+ b mod p

• In a Jacobian coordinates:

Y 2 = X3 + aXZ4 + bZ6 mod p

To convert affine coordinates (x, y) to/from Jacobian coordinates (X,Y, Z):

Espressif Systems 272
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://csrc.nist.gov/CSRC/media/Publications/fips/186/3/archive/2009-06-25/documents/fips_186-3.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

15 ECC Hardware Accelerator (ECC) GoBack

• From Affine to Jacobian coordinates

x = X/Z2 mod p

y = Y /Z3 mod p

• From Jacobian to affine coordinates

X = x

Y = y

Z = 1

15.3.2 ECC Definitions

15.3.2.1 Memory Blocks

ECC’s memory blocks store input date and output data of the ECC operation.

Table 15­1. ECC Accelerator Memory Blocks

Memory Size (byte) Starting Address* Ending Address * Access

ECC_Mem_k 32 0x100 0x11F R/W

ECC_Mem_Px 32 0x120 0x13F R/W

ECC_Mem_Py 32 0x140 0x15F R/W

* Address offset relative to ECC accelerator base address provided in Table 3-3 in

Chapter 3 System and Memory.

15.3.2.2 Data and Data Block

ESP8684’s ECC operates on data of 256 bits. This data (D[255 : 0]) can be divided into eight 32-bit data blocks

D[n][31 : 0](n = 0, 1, · · · , 7). To be specific:

D[255 : 0] = D[7][31 : 0], D[6][31 : 0], D[5][31 : 0], D[4][31 : 0], D[3][31 : 0], D[2][31 : 0], D[1][31 : 0], D[0][31 : 0]

15.3.2.3 Write Data

Write data means writing data to an ECC memory block and using this data as the input to the ECC algorithm.

To be more specific, write data to an ECC memory block means write D[n][31 : 0](n = 0, 1, · · · , 7) to the

“starting address of this ECC memory block +4× n” successively:

• write D[0] to “starting address”

• write D[1] to “starting address + 4”

• · · ·

• write D[7] to “starting address + 28”

Note:

When the key size of 192 bits is used, you need to append 0 before 192 bits of data and write 256 bits of data.

Espressif Systems 273
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

15 ECC Hardware Accelerator (ECC) GoBack

15.3.2.4 Read Data

Read data means reading data from the starting address and using this data as the output from the ECC

algorithm. To be more specific, read data from an ECC memory block means read D[n][31 : 0](n = 0, 1, · · · , 7)
from the “starting address of this ECC memory block + 4× n” successively:

• read D[0] from “starting address”

• read D[1] from “starting address + 4”

• · · ·

• read D[7] from “starting address + 28”

Note:

When the key size of 192 bits is used, only read 192 bit (6 blocks) of data.

15.3.2.5 Standard Calculation and Jacobian Calculation

ESP8684’s ECC performs Base Point Calculation (including Base Point Verification and Base Point Multiplication)

using the affine coordinates and Jacobian Calculation (including Jacobian Point Verification and Jacobian Point

Multiplication) using the Jacobian coordinates.

15.4 Function Description

15.4.1 Key Size

ESP8684’s ECC supports acceleration based on two key sizes (corresponding to two different elliptic curves). By

configuring ECC_KEY_LENGTH field, users can choose desired key size. Details can be seen in Table 15-2

below.

Table 15­2. Choose ECC Accelerator Key Size

ECC_KEY_LENGTH Elliptic Curves

1’b0 FIPS P-192

1’b1 FIPS P-256

1 See definition of FIPS P-192 and P-256 in FIPS 186-3.

15.4.2 Working Modes

ESP8684’s ECC accelerator supports 7 working modes based on two elliptic curves described in the above

section. By configuring ECC_WORK_MODE field, users can choose desired working mode. Details can be seen

in Table 15-3.

Espressif Systems 274
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://csrc.nist.gov/CSRC/media/Publications/fips/186/3/archive/2009-06-25/documents/fips_186-3.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

15 ECC Hardware Accelerator (ECC) GoBack

Table 15­3. ECC Accelerator’s Working Modes

ECC_WORK_MODE Working Modes ECC_WORK_MODE Working Modes

3’d0 Point Multi Mode 3’d4 Jacobian Point Multi

3’d1 Division Mode 3’d5 Reserved

3’d2 Point Verif 3’d6 Jacobian Point Verif

3’d3 Point Verif + Multi 3’d7
Point Verification +

Jacobian Multi

Detailed description about each working modes is provided in the following sections.

15.4.2.1 Base Point Multiplication (Point Multi Mode)

Base Point Multiplication can be represented as:

(Qx, Qy) = k · (Px, Py)

where,

• Input: Px, Py, and k are stored in ECC_Mem_Px, ECC_Mem_Py, and ECC_Mem_k respectively.

• Output: Qx and Qy are stored in ECC_Mem_Px and ECC_Mem_Py respectively.

15.4.2.2 Finite Field Division (Division Mode)

Finite Field Division can be represented as:

Result = Py · k−1

where,

• Input: Py and k are stored in ECC_Mem_Py and ECC_Mem_k.

• Output: Result is stored in ECC_Mem_Py.

15.4.2.3 Base Point Verification (Point Verif Mode)

Base Point Verification can be used to verify if a point (Px, Py) is on a selected elliptic curve.

• Input: Px and Py are stored in ECC_Mem_Px and ECC_Mem_Py, respectively.

• Output: verification result is stored in ECC_VERIFICATION_RESULT field.

15.4.2.4 Base Point Verification + Base Point Multiplication (Point Verif + Multi Mode)

In this working mode, ECC first verifies if Point (Px, Py) is on the selected elliptic curve or not. If yes, then perform

the multiplication:

(Qx, Qy) = k · (Px, Py)

where,

• Input: Px, Py and k are stored at ECC_Mem_Px, ECC_Mem_Py, and ECC_Mem_k respectively.

• Output:

– verification result is stored in ECC_VERIFICATION_RESULT field.

Espressif Systems 275
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

15 ECC Hardware Accelerator (ECC) GoBack

– Qx and Qy are stored in ECC_Mem_Px and ECC_Mem_Py respectively.

15.4.2.5 Jacobian Point Multiplication (Jacobian Point Multi Mode)

Jacobian Point Multiplication can be represented as:

(Qx, Qy, Qz) = k · (Px, Py, 1)

where,

• (Qx, Qy, Qz) is a Jacobian point on the selected elliptic curve.

• 1 in the point’s Jacobian coordinates is auto completed by hardware.

• Input: Px, Py and k are stored in ECC_Mem_Px, ECC_Mem_Py, and ECC_Mem_k respectively.

• Output: Qx, Qy, and Qz are stored in ECC_Mem_Px, ECC_Mem_Py, and ECC_Mem_k, respectively.

15.4.2.6 Jacobian Point Verification (Jacobian Point Verif Mode)

Jacobian Point Verification can be used to verify if a point (Qx, Qy, Qz) is on a selected elliptic curve.

• (Qx, Qy, Qz) is the point in Jacobian Coordinates.

• Input: Qx, Qy, and Qz are stored in ECC_Mem_Px, ECC_Mem_Py, and ECC_Mem_k, respectively.

• Output: verification result is stored in ECC_VERIFICATION_RESULT field.

15.4.2.7 Base Point Verification + Jacobian Point Multiplication (Point Verif + Jacobian

Point Multi Mode)

In this working mode, ECC first verifies if Point (Px, Py) is on the selected elliptic curve or not. If yes, then perform

the multiplication:

(Qx, Qy, Qz) = k · (Px, Py, 1)

where,

• (Qx, Qy, Qz) is a Jacobian point on the selected elliptic curve.

• 1 in the point’s Jacobian coordinates is auto completed by hardware.

• Input: Px, Py, and k are stored in ECC_Mem_Px, ECC_Mem_Py, and ECC_Mem_k.

• Output:

– verification result is stored in ECC_VERIFICATION_RESULT field.

– Qx, Qy, and Qz are stored in ECC_Mem_Px, ECC_Mem_Py, and ECC_Mem_k.

15.5 Clocks and Resets

ESP8684’s ECC only has one clock module (crypo_ecc_clk) and one reset module (crypto_ecc_rst). Users

should enable the ECC clock and disable the ECC reset before starting the ECC accelerator. For details on how

to configure the ECC clock and reset, please refer to Chapter 6 Reset and Clock.

Espressif Systems 276
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

15 ECC Hardware Accelerator (ECC) GoBack

15.6 Interrupts

ESP8684’s ECC accelerator can generate one interrupt signal ECC_INTR and send it to Interrupt Matrix.

Note:

Each interrupt signal is generated by any of its interrupts: any of its interrupt triggered can generate the interrupt signal.

ECC_INTR has only one interrupt ECC_CALC_DONE_INT, which is triggered on the completion of an ECC

computation.

This ECC interrupt ECC_CALC_DONE_INT is configured by the following registers:

• ECC_CALC_DONE_INT_RAW: stores the raw interrupt of ECC_CALC_DONE_INT.

• ECC_CALC_DONE_INT_ST: indicates the status of the ECC_CALC_DONE_INT interrupt. This field is

generated by enabling/disabling ECC_CALC_DONE_INT_RAW field via ECC_CALC_DONE_INT_ENA.

• ECC_CALC_DONE_INT_ENA: enables/disables the ECC_CALC_DONE_INT interrupt.

• ECC_CALC_DONE_INT_CLR: set this bit to clear the ECC_CALC_DONE_INT interrupt status. By setting

this bit to 1, fields ECC_CALC_DONE_INT_RAW and ECC_CALC_DONE_INT_ST will be cleared.

15.7 Programming Procedures

The programming procedures for configuring ECC are described below:

1. Configure the ECC clock and reset.

2. Choose key size and working mode as described in Section 15.4.

3. Enable ECC_CALC_DONE_INT interrupt as described in Section 15.6.

4. Set ECC_START field to start ECC calculation.

5. Wait for the ECC_CALC_DONE_INT interrupt, which indicates the completion of the ECC calculation.

6. Check the result as described in Section 15.4.

Espressif Systems 277
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

sec:ecc-interrupt
mod:intmtrx
sec:ecc-interrupt
sec:ecc-interrupt
sec:ecc-interrupt
sec:ecc-interrupt
sec:ecc-interrupt
sec:ecc-interrupt
sec:ecc-interrupt
sec:ecc-interrupt
sec:ecc-interrupt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

15 ECC Hardware Accelerator (ECC) GoBack

15.8 Register Summary

The addresses in this section are relative to ECC accelerator base address provided in Table 3-3 in Chapter 3

System and Memory.

Name Description Address Access

Interrupt Registers

ECC_MULT_INT_RAW_REG ECC raw interrupt status register 0x000C RO/WTC/SS

ECC_MULT_INT_ST_REG ECC masked interrupt status register 0x0010 RO

ECC_MULT_INT_ENA_REG ECC interrupt enable register 0x0014 R/W

ECC_MULT_INT_CLR_REG ECC interrupt clear register 0x0018 WT

Configuration Register

ECC_MULT_CONF_REG ECC configuration register 0x001C varies

Version Register

ECC_MULT_DATE_REG Version control register 0x00FC R/W

Espressif Systems 278
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

15 ECC Hardware Accelerator (ECC) GoBack

15.9 Registers

The addresses in this section are relative to ECC accelerator base address provided in Table 3-3 in Chapter 3

System and Memory.

Register 15.1. ECC_MULT_INT_RAW_REG (0x000C)

(re
se
rve
d)

0 0

31 1

EC
C_
CA
LC
_D
ON
E_
IN
T_
RA
W

0

0

Reset

ECC_CALC_DONE_INT_RAW The raw interrupt status of ECC_CALC_DONE_INT. (RO/WTC/SS)

Register 15.2. ECC_MULT_INT_ST_REG (0x0010)

(re
se
rve
d)

0 0

31 1

EC
C_
CA
LC
_D
ON
E_
IN
T_
ST

0

0

Reset

ECC_CALC_DONE_INT_ST The masked interrupt status of ECC_CALC_DONE_INT. (RO)

Register 15.3. ECC_MULT_INT_ENA_REG (0x0014)

(re
se
rve
d)

0 0

31 1

EC
C_
CA
LC
_D
ON
E_
IN
T_
EN
A

0

0

Reset

ECC_CALC_DONE_INT_ENA Write 1 to enable the ECC_CALC_DONE_INT interrupt. (R/W)

Espressif Systems 279
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

sec:ecc-interrupt
sec:ecc-interrupt
sec:ecc-interrupt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

15 ECC Hardware Accelerator (ECC) GoBack

Register 15.4. ECC_MULT_INT_CLR_REG (0x0018)

(re
se
rve
d)

0 0

31 1

EC
C_
CA
LC
_D
ON
E_
IN
T_
CL
R

0

0

Reset

ECC_CALC_DONE_INT_CLR Write 1 to clear the ECC_CALC_DONE_INT interrupt. (WT)

Register 15.5. ECC_MULT_CONF_REG (0x001C)

(re
se
rve
d)

0 0

31 9

EC
C_
VE
RI
FIC
AT
IO
N_
RE
SU
LT

0

8

EC
C_
W
OR
K_
M
OD
E

0

7 5

EC
C_
CL
K_
EN

0

4

(re
se
rve
d

0

3

EC
C_
KE
Y_
LE
NG
TH

0

2

EC
C_
RE
SE
T

0

1

EC
C_
ST
AR
T

0

0

Reset

ECC_START Write 1 to start calculation of ECC Accelerator. This bit will be self-cleared after the

calculation is done. (R/W/SC)

ECC_RESET Write 1 to reset ECC Accelerator. (WT)

ECC_KEY_LENGTH The key length mode bit of ECC Accelerator. 1’b0: P-192. 1’b1: P-256. (R/W)

ECC_CLK_EN Write 1 to force on register clock gate. (R/W)

ECC_WORK_MODE The work mode bits of ECC Accelerator. 3’d0: Point Multi Mode. 3’d1: Division

mode. 3’d2: Point verification mode. 3’d3: Point Verif+Multi mode. 3’d4: Jacobian Point Multi

Mode. 3’d5: Reserved. 3’d6: Jacobian Point Verification Mode. 3’d7: Point Verif + Jacobian Multi

Mode. (R/W)

ECC_VERIFICATION_RESULT The verification result bit of ECC Accelerator, only valid when calcu-

lation is done. (RO/SS)

Register 15.6. ECC_MULT_DATE_REG (0x00FC)

(re
se
rve
d)

0 0 0 0

31 28

EC
C_
DA
TE

0x2012230

27 0

Reset

ECC_DATE ECC Version control register. (R/W)

Espressif Systems 280
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

sec:ecc-interrupt
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

16 SHA Accelerator (SHA)

16.1 Introduction

ESP8684 integrates an SHA accelerator, which is a hardware device that speeds up SHA algorithm significantly,

compared to SHA algorithm implemented solely in software. The SHA accelerator integrated in ESP8684 has

two working modes, which are Typical SHA and DMA-SHA.

16.2 Features

ESP8684 ’s SHA accelerator supports:

• Hash algorithms introduced in FIPS PUB 180-4 Spec.

– SHA-1

– SHA-224

– SHA-256

• Two working modes

– Typical SHA

– DMA-SHA

• Interleaved function

• Interrupt function when working in DMA-SHA working mode

16.3 Working Modes

The SHA accelerator integrated in ESP8684 has two working modes.

• Typical SHA Working Mode: all the data is written and read via CPU directly.

• DMA-SHA Working Mode: all the data is read via DMA. That is, users can configure the DMA controller to

read all the data needed for hash operation, thus releasing CPU for completing other tasks.

Users can start the SHA accelerator with different working modes by configuring registers SHA_START_REG and

SHA_DMA_START_REG. For details, please see Table 16-1.

Table 16­1. SHA Accelerator Working Mode

Working Mode Configuration Method

Typical SHA Set SHA_START_REG to 1

DMA-SHA Set SHA_DMA_START_REG to 1

Espressif Systems 281
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

Users can choose hash algorithms by configuring the SHA_MODE_REG register. For details, please see Table

16-2.

Table 16­2. SHA Hash Algorithm Selection

Hash Algorithm SHA_MODE_REG Configuration

SHA-1 0

SHA-224 1

SHA-256 2

16.4 Function Description

SHA accelerator can generate the message digest via two steps: Preprocessing and Hash operation.

16.4.1 Preprocessing

Preprocessing consists of three steps: padding the message, parsing the message into message blocks and

setting the initial hash value.

16.4.1.1 Padding the Message

The SHA accelerator can only process message blocks of 512 bits. Thus, all the messages should be padded to

a multiple of 512 bits before the hash task.

Suppose that the length of the message M is m bits. Then M shall be padded as introduced below:

1. First, append the bit “1” to the end of the message;

2. Second, append k bits of zeros, where k is the smallest, non-negative solution to the equation

m+ 1 + k ≡ 448 mod 512;

3. Last, append the 64-bit block of value equal to the number m expressed using a binary representation.

For more details, please refer to Section “5.1 Padding the Message” in FIPS PUB 180-4 Spec.

16.4.1.2 Parsing the Message

The message and its padding must be parsed into N 512-bit blocks, M (1), M (2), …, M (N). Since the 512 bits

of the input block may be expressed as sixteen 32-bit words, the first 32 bits of message block i are denoted

M(i)
0 , the next 32 bits are M(i)

1 , and so on up to M(i)
15 .

During the task, all the message blocks are written into the SHA_M_n_REG: M(i)
0 is stored in SHA_M_0_REG,

M(i)
1 stored in SHA_M_1_REG, …, and M(i)

15 stored in SHA_M_15_REG.

Note:

For more information about “message block”, please refer to Section “2.1 Glossary of Terms and Acronyms” in FIPS PUB
180-4 Spec.

Espressif Systems 282
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

16.4.1.3 Setting the Initial Hash Value

Before hash task begins for any secure hash algorithms, the initial Hash value H(0) must be set based on different

algorithms. However, the SHA accelerator uses the initial Hash values (constant C) stored in the hardware for

hash tasks.

16.4.2 Hash Operation

After the preprocessing, the ESP8684 SHA accelerator starts to hash a message M and generates message

digest of different lengths, depending on different hash algorithms. As described above, the ESP8684 SHA

accelerator supports two working modes, which are Typical SHA and DMA-SHA. The operation process for the

SHA accelerator under two working modes is described in the following subsections.

16.4.2.1 Typical SHA Mode Process

Usually, the SHA accelerator will process all blocks of a message and produce a message digest before starting

the computation of the next message digest.

However, ESP8684 SHA also supports optional “interleaved” message digest calculation. Users can insert new

calculation each time the SHA accelerator completes a sequence of operations.

• In Typical SHA mode, this can be done after each individual message block.

• In DMA-SHA mode, this can be done after a full sequence of DMA operations is complete.

Specifically, users can read out the message digest from registers SHA_H_n_REG after completing part of a

message digest calculation, and use the SHA accelerator for a different calculation. After the different calculation

completes, users can restore the previous message digest to registers SHA_H_n_REG, and resume the

accelerator with the previously paused calculation.

Typical SHA Process

1. Select a hash algorithm.

• Configure the SHA_MODE_REG register based on Table 16-2.

2. Process the current message block 1.

• Write the message block in registers SHA_M_n_REG.

3. Start the SHA accelerator.

• If this is the first time to execute this step, set the SHA_START_REG register to 1 to start the SHA

accelerator. In this case, the accelerator uses the initial hash value stored in hardware for a given

algorithm configured in Step 1 to start the calculation;

• If this is not the first time to execute this step2, set the SHA_CONTINUE_REG register to 1 to start the

SHA accelerator. In this case, the accelerator uses the hash value stored in the SHA_H_n_REG

register to start calculation.

4. Check the progress of the current message block.

• Poll register SHA_BUSY_REG until the content of this register becomes 0, indicating the accelerator

has completed the calculation for the current message block and now is in the “idle” status 3.

Espressif Systems 283
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

5. Decide if you have more message blocks to process:

• If yes, please go back to Step 2.

• Otherwise, please continue.

6. Obtain the message digest.

• Read the message digest from registers SHA_H_n_REG.

Note:

1. In this step, the software can also write the next message block (to be processed) in registers SHA_M_n_REG, if

any, while the hardware starts SHA calculation, to save time.

2. You are resuming the SHA accelerator with the previously paused calculation.

3. Here you can decide if you want to insert other calculations. If yes, please go to the process for interleaved

calculations for details.

As mentioned above, ESP8684 SHA accelerator supports “interleaving” calculation under the Typical SHA

working mode.

The process to implement interleaved calculation is described below.

1. Prepare to hand the SHA accelerator over for an interleaved calculation by storing the following data of the

previous calculation.

• The selected hash algorithm stored in the SHA_MODE_REG register.

• The message digest stored in registers SHA_H_n_REG.

2. Perform the interleaved calculation. For the detailed process of the interleaved calculation, please refer to

Typical SHA process or DMA-SHA process, depending on the working mode of your interleaved calculation.

3. Prepare to hand the SHA accelerator back to the previously paused calculation by restoring the following

data of the previous calculation.

• Write the previously stored hash algorithm back to register SHA_MODE_REG.

• Write the previously stored message digest back to registers SHA_H_n_REG.

4. Write the next message block from the previous paused calculation in registers SHA_M_n_REG, and set the

SHA_CONTINUE_REG register to 1 to restart the SHA accelerator with the previously paused calculation.

16.4.2.2 DMA­SHA Mode Process

ESP8684 SHA accelerator does not support “interleaving” message digest calculation at the level of individual

message blocks when using DMA, which means you cannot insert new calculation before a complete DMA-SHA

process (of one or more message blocks) completes. In this case, users who need interleaved operation are

recommended to divide the message blocks and perform several DMA-SHA calculations, instead of trying to

compute all the messages in one go.

Single DMA-SHA calculation supports up to 63 data blocks.

In contrast to the Typical SHA working mode, when the SHA accelerator is working under the DMA-SHA mode,

all data read are completed via DMA. Therefore, users are required to configure the DMA controller following the

description in Chapter 2 GDMA Controller (GDMA).

Espressif Systems 284
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

DMA­SHA process

1. Select a hash algorithm.

• Select a hash algorithm by configuring the SHA_MODE_REG register. For details, please refer to Table

16-2.

2. Configure the SHA_INT_ENA_REG register to enable or disable interrupt (Set 1 to enable).

3. Configure the number of message blocks.

• Write the number of message blocks M to the SHA_DMA_BLOCK_NUM_REG register.

4. Start the DMA-SHA calculation.

• If the current DMA-SHA calculation follows a previous calculation, firstly write the message digest from

the previous calculation to registers SHA_H_n_REG, then write 1 to register

SHA_DMA_CONTINUE_REG to start SHA accelerator;

• Otherwise, write 1 to register SHA_DMA_START_REG to start the accelerator.

5. Wait till the completion of the DMA-SHA calculation, which happens when:

• The content of SHA_BUSY_REG register becomes 0, or

• An SHA interrupt occurs. In this case, please clear interrupt by writing 1 to the SHA_INT_CLEAR_REG

register.

6. Obtain the message digest:

• Read the message digest from registers SHA_H_n_REG.

16.4.3 Message Digest

After the hash task completes, the SHA accelerator writes the message digest from the task to registers

SHA_H_n_REG (n: 0~7). The lengths of the generated message digest are different depending on different hash

algorithms. For details, see Table 16-3 below:

Table 16­3. The Storage and Length of Message Digest from Different Algorithms

Hash Algorithm Length of Message Digest (in bits) Storage1

SHA-1 160 SHA_H_0_REG ~ SHA_H_4_REG

SHA-224 224 SHA_H_0_REG ~ SHA_H_6_REG

SHA-256 256 SHA_H_0_REG ~ SHA_H_7_REG

1 The message digest is stored in registers from most significant bits to the least significant bits,

with the first word stored in register SHA_H_0_REG and the second word stored in register

SHA_H_1_REG... For details, please see subsection 16.4.1.2.

16.4.4 Interrupt

SHA accelerator supports interrupt on the completion of message digest calculation when working in the

DMA-SHA mode. To enable this function, write 1 to register SHA_INT_ENA_REG. Note that the interrupt should

be cleared by software after use via setting the SHA_INT_CLEAR_REG register to 1.

Espressif Systems 285
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

16.5 Register Summary

The addresses in this section are relative to the SHA accelerator base address provided in Table 3-3 in Chapter 3

System and Memory.

Name Description Address Access

Control/Status registers

SHA_CONTINUE_REG
Continues SHA operation (only effective in Typi-

cal SHA mode)
0x0014 WO

SHA_BUSY_REG Indicates if SHA Accelerator is busy or not 0x0018 RO

SHA_DMA_START_REG
Starts the SHA accelerator for DMA-SHA oper-

ation
0x001C WO

SHA_START_REG
Starts the SHA accelerator for Typical SHA op-

eration
0x0010 WO

SHA_DMA_CONTINUE_REG
Continues SHA operation (only effective in DMA-

SHA mode)
0x0020 WO

SHA_INT_CLEAR_REG DMA-SHA interrupt clear register 0x0024 WO

SHA_INT_ENA_REG DMA-SHA interrupt enable register 0x0028 R/W

Version Register

SHA_DATE_REG Version control register 0x002C R/W

Configuration Registers

SHA_MODE_REG Defines the algorithm of SHA accelerator 0x0000 R/W

Data Registers

SHA_DMA_BLOCK_NUM_REG
Block number register (only effective for DMA-

SHA)
0x000C R/W

SHA_H_0_REG Hash value 0x0040 R/W

SHA_H_1_REG Hash value 0x0044 R/W

SHA_H_2_REG Hash value 0x0048 R/W

SHA_H_3_REG Hash value 0x004C R/W

SHA_H_4_REG Hash value 0x0050 R/W

SHA_H_5_REG Hash value 0x0054 R/W

SHA_H_6_REG Hash value 0x0058 R/W

SHA_H_7_REG Hash value 0x005C R/W

SHA_M_0_REG Message 0x0080 R/W

SHA_M_1_REG Message 0x0084 R/W

SHA_M_2_REG Message 0x0088 R/W

SHA_M_3_REG Message 0x008C R/W

SHA_M_4_REG Message 0x0090 R/W

SHA_M_5_REG Message 0x0094 R/W

SHA_M_6_REG Message 0x0098 R/W

SHA_M_7_REG Message 0x009C R/W

SHA_M_8_REG Message 0x00A0 R/W

SHA_M_9_REG Message 0x00A4 R/W

SHA_M_10_REG Message 0x00A8 R/W

SHA_M_11_REG Message 0x00AC R/W

Espressif Systems 286
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

Name Description Address Access

SHA_M_12_REG Message 0x00B0 R/W

SHA_M_13_REG Message 0x00B4 R/W

SHA_M_14_REG Message 0x00B8 R/W

SHA_M_15_REG Message 0x00BC R/W

16.6 Registers

The addresses in this section are relative to the SHA accelerator base address provided in Table 3-3 in Chapter 3

System and Memory.

Register 16.1. SHA_START_REG (0x0010)

(re
se
rve
d)

0 0

31 1

SH
A_
ST
AR
T

0

0

Reset

SHA_START Write 1 to start Typical SHA calculation. (WO)

Register 16.2. SHA_CONTINUE_REG (0x0014)

(re
se
rve
d)

0 0

31 1

SH
A_
CO
NT
IN
UE

0

0

Reset

SHA_CONTINUE Write 1 to continue Typical SHA calculation. (WO)

Register 16.3. SHA_BUSY_REG (0x0018)

(re
se
rve
d)

0 0

31 1

SH
A_
BU
SY
_S
TA
TE

0

0

Reset

SHA_BUSY_STATE Indicates the states of SHA accelerator. (RO) 1’h0: idle 1’h1: busy

Espressif Systems 287
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

Register 16.4. SHA_DMA_START_REG (0x001C)

(re
se
rve
d)

0 0

31 1

SH
A_
DM
A_
ST
AR
T

0

0

Reset

SHA_DMA_START Write 1 to start DMA-SHA calculation. (WO)

Register 16.5. SHA_DMA_CONTINUE_REG (0x0020)

(re
se
rve
d)

0 0

31 1

SH
A_
DM
A_
CO
NT
IN
UE

0

0

Reset

SHA_DMA_CONTINUE Write 1 to continue DMA-SHA calculation. (WO)

Register 16.6. SHA_INT_CLEAR_REG (0x0024)

(re
se
rve
d)

0 0

31 1

SH
A_
CL
EA
R_
IN
TE
RR
UP
T

0

0

Reset

SHA_CLEAR_INTERRUPT Clears DMA-SHA interrupt. (WO)

Register 16.7. SHA_INT_ENA_REG (0x0028)

(re
se
rve
d)

0 0

31 1

SH
A_
IN
TE
RR
UP
T_
EN
A

0

0

Reset

SHA_INTERRUPT_ENA Enables DMA-SHA interrupt. (R/W)

Espressif Systems 288
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

Register 16.8. SHA_DATE_REG (0x002C)

(re
se
rve
d)

0 0

31 30

SH
A_
DA
TE

0x20190402

29 0

Reset

SHA_DATE Version control register. (R/W)

Register 16.9. SHA_MODE_REG (0x0000)

(re
se
rve
d)

0 0

31 3

SH
A_
M
OD
E

0x0

2 0

Reset

SHA_MODE Defines the SHA algorithm. For details, please see Table 16-2. (R/W)

Register 16.10. SHA_DMA_BLOCK_NUM_REG (0x000C)

(re
se
rve
d)

0 0

31 6

SH
A_
DM
A_
BL
OC
K_
NU
M

0x0

5 0

Reset

SHA_DMA_BLOCK_NUM Defines the DMA-SHA block number. (R/W)

Register 16.11. SHA_H_n_REG (n: 0­7) (0x0040+4*n)

SH
A_
H_
n

0x000000

31 0

Reset

SHA_H_n Stores the nth 32-bit piece of the Hash value. (R/W)

Espressif Systems 289
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

16 SHA Accelerator (SHA) GoBack

Register 16.12. SHA_M_n_REG (n: 0­15) (0x0080+4*n)

SH
A_
M
_n

0x000000

31 0

Reset

SHA_M_n Stores the nth 32-bit piece of the message. (R/W)

Espressif Systems 290
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

17 External Memory Encryption and Decryption (XTS_AES) GoBack

17 External Memory Encryption and Decryption (XTS_AES)

17.1 Overview

The ESP8684 integrates an External Memory Encryption and Decryption module that complies with the

XTS_AES standard algorithm specified in IEEE Std 1619-2007, providing security for users’ application code and

data stored in the external memory (flash). Users can store proprietary firmware and sensitive data (e.g.,

credentials for gaining access to a private network) to the external flash.

17.2 Features

This module supports the following features:

• General XTS_AES algorithm, compliant with IEEE Std 1619-2007

• Software-triggered manual encryption

• High-speed auto decryption, without software’s participation

• Encryption and decryption functions jointly determined by register configurations, eFuse parameters, and

Boot modes

17.3 Module Structure

The External Memory Encryption and Decryption module consists of two blocks, namely the Manual Encryption

block and Auto Decryption block. The module architecture is shown in Figure 17-1.

Figure 17­1. Architecture of the External Memory Encryption and Decryption

The Manual Encryption block can encrypt instructions/data which will then be written to the external flash as

ciphertext via SPI1.

In the System Registers (SYSREG) peripheral (see Chapter 13 System Registers (SYSTEM)), the following four bits

in register SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG are relevant to the external

Espressif Systems 291
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://ieeexplore.ieee.org/document/4493450
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

17 External Memory Encryption and Decryption (XTS_AES) GoBack

memory encryption and decryption:

• SYSTEM_ENABLE_DOWNLOAD_MANUAL_ENCRYPT

• SYSTEM_ENABLE_DOWNLOAD_G0CB_DECRYPT

• SYSTEM_ENABLE_DOWNLOAD_DB_ENCRYPT

• SYSTEM_ENABLE_SPI_MANUAL_ENCRYPT

The XTS_AES module also fetches two parameters from the peripheral eFuse Controller, which are:

EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT and EFUSE_SPI_BOOT_ENCRYPT_DECRYPT_CNT. For

detailed information, please see Chapter 4 eFuse Controller (eFuse).

17.4 Functional Description

17.4.1 XTS Algorithm

The manual encryption and auto decryption use the XTS algorithm. During implementation, the XTS algorithm is

characterized by a ”data unit” of 1024 bits, defined in the Section XTS-AES encryption procedure of

XTS-AES Tweakable Block Cipher Standard. For more information about XTS-AES algorithm, please refer to IEEE

Std 1619-2007.

17.4.2 Key

The Manual Encryption block and Auto Decryption block share the same Key when implementing XTS algorithm.

The Key is provided by the eFuse hardware and cannot be accessed by users.

The Key is 256-bit long. The value of the Key is determined by the eFuse parameters. For easier description,

we define:

• KeyA: the lowest 128-bit of BLOCK3 in eFuse.

• KeyB : the highest 128-bit of BLOCK3 in eFuse.

There are two possibilities of how the Key is generated depending on the value of

EFUSE_XTS_KEY_LENGTH_256. In each case, the Key can be uniquely determined by KeyA and KeyB as

shown in Table 17-1.

Table 17­1. Key Generated Based on KeyA,KeyB

EFUSE_XTS_KEY_LENGTH_256 Key Key Length (bit)

1 {KeyB ,KeyA} 256

0 SHA− 256(KeyA)
1 256

1 ”SHA-256” indicates the SHA-256 algorithm, please refer to Chapter 16

SHA Accelerator (SHA).

17.4.3 Target Memory Space

The target memory space refers to a continuous address space in the external memory (flash) where the first

encrypted ciphertext is stored. The target memory space can be uniquely determined by two relevant

parameters: target size and base address, whose definitions are listed below.

• Target size: the size of the target memory space, indicating the number of bytes encrypted in one

Espressif Systems 292
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://ieeexplore.ieee.org/document/4493450
https://ieeexplore.ieee.org/document/4493450
https://ieeexplore.ieee.org/document/4493450
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

17 External Memory Encryption and Decryption (XTS_AES) GoBack

encryption operation, which supports 16 or 32 bytes.

• Base address: the base_addr of the target memory space. It is a 24-bit physical address, with range of

0x0000_0000 ~ 0x00FF_FFFF. It should be aligned to size, i.e., base_addr%size == 0.

For example, if there are 16 bytes of instruction data need to be encrypted and written to address 0x130 ~ 0x13F

in the external flash, then the target space is 0x130 ~ 0x13F, size is 16 (bytes), and base address is 0x130.

The encryption of any length (must be multiples of 16 bytes) of plaintext instruction/data can be completed

separately in multiple operations, and each operation has its individual target memory space and the relevant

parameters.

For Auto Decryption blocks, these parameters are automatically determined by hardware. For Manual Encryption

blocks, these parameters should be configured by users.

Note:
The “tweak” defined in Section Data units and tweaks of IEEE Std 1619-2007 is a 128-bit non-negative integer

(tweak), which can be generated according to tweak = (base_addr & 0x00FFFF80). The lowest 7 bits and the

highest 97 bits in tweak are always zero.

17.4.4 Data Writing

For Auto Decryption blocks, data writing is automatically applied in hardware. For Manual Encryption blocks,

data writing should be applied by users. The Manual Encryption block has a register block which consists of 8

registers, i.e., XTS_AES_PLAIN_n_REG (n: 0 ~ 7), that are dedicated to data writing and can store up to 256 bits

of plaintext at a time.

Actually, the Manual Encryption block does not care where the plaintext comes from, but only where the

ciphertext will be stored. Because of the strict correspondence between plaintext and ciphertext, in order to

better describe how the plaintext is stored in the register block, we assume that the plaintext is stored in the

target memory space in the first place and replaced by ciphertext after encryption. Therefore, the following

description no longer has the concept of “plaintext”, but uses “target memory space” instead. Please note that

the plaintext can come from everywhere in actual use, but users should understand how the plaintext is stored in

the register block.

How mapping between target memory space and registers works:

Assume a word in the target memory space is stored in address, define offset = address%32, n = offset
4 , then

the word will be stored in register XTS_AES_PLAIN_n_REG.

For example, when the target size is 32, all registers in the register block will be used. The mapping between

offset and registers is shown in Table 17-2.

Table 17­2. Mapping Between Offsets and Registers

offset Register offset Register

0x00 XTS_AES_PLAIN_0_REG 0x10 XTS_AES_PLAIN_4_REG

0x04 XTS_AES_PLAIN_1_REG 0x14 XTS_AES_PLAIN_5_REG

0x08 XTS_AES_PLAIN_2_REG 0x18 XTS_AES_PLAIN_6_REG

0x0C XTS_AES_PLAIN_3_REG 0x1C XTS_AES_PLAIN_7_REG

Espressif Systems 293
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://ieeexplore.ieee.org/document/4493450
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

17 External Memory Encryption and Decryption (XTS_AES) GoBack

17.4.5 Manual Encryption Block

The Manual Encryption block is a peripheral module. It is equipped with registers and can be accessed by the

CPU directly. Registers embedded in this block, the System Registers (SYSREG) peripheral, eFuse parameters,

and boot modes jointly configure and use this module. Please note that the Manual Encryption block can only

encrypt for storage in external flash.

Manual encryption is allowed only when the Manual Encryption block has operation permissions.

Whether the Manual Encryption block has operation permissions depends on:

• In SPI Boot mode

If bit SYSTEM_ENABLE_SPI_MANUAL_ENCRYPT in register

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG is 1, the Manual Encryption block

has operation permissions. Otherwise, it is not operational.

• In Download Boot mode

If bit SYSTEM_ENABLE_DOWNLOAD_MANUAL_ENCRYPT in register

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG is 1 and the eFuse parameter

EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT is 0, the Manual Encryption block has operation

permissions. Otherwise, it is not operational.

Note:

• Even though the CPU can skip cache and get the encrypted instruction/data directly by reading the external mem-

ory, users can by no means access Key.

17.4.6 Auto Decryption Block

The Auto Decryption block is not a conventional peripheral, so it does not have any registers and cannot be

accessed by the CPU directly. The System Registers (SYSREG) peripheral, eFuse parameters, and boot modes

jointly configure and use this block.

Auto decryption is allowed only when the Auto Decryption block has operation permissions. Whether the

Auto Decryption block has operation permissions depends on:

• In SPI Boot mode

If the first bit or the third bit in the eFuse parameter EFUSE_SPI_BOOT_ENCRYPT_DECRYPT_CNT (3 bits)

is set to 1, then the Auto Decryption block has operation permissions. Otherwise, it is not operational.

• In Download Boot mode

If bit SYSTEM_ENABLE_DOWNLOAD_G0CB_DECRYPT in register

SYSTEM_EXTERNAL_DEVICE_ENCRYPT_DECRYPT_CONTROL_REG is 1, the Auto Decryption block has

operation permissions. Otherwise, it is not operational.

Note:

• When the Auto Decryption block has operation permissions, it will automatically decrypt the ciphertext if the CPU

reads instructions/data from the external memory via cache to retrieve the instructions/data. The entire decryption

process does not need software participation and is transparent to the cache. Users can by no means obtain the

Espressif Systems 294
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

17 External Memory Encryption and Decryption (XTS_AES) GoBack

decryption Key during the process.

• When the Auto Decryption block has no operation permissions, it does not have any effect on the contents stored

in the external memory, no matter if they are encrypted or not. Therefore, what the CPU reads via cache is the

original information stored in the external memory.

17.5 Software Process

When the Manual Encryption block operates, software needs to be involved in the process. The steps are as

follows:

1. Configure XTS_AES:

• Set register XTS_AES_PHYSICAL_ADDRESS_REG to base_addr.

• Set register XTS_AES_LINESIZE_REG to size
32 .

For definitions of base_addr and size, please refer to Section 17.4.3.

2. Write plaintext data to the registers block XTS_AES_PLAIN_n_REG (n: 0 ~ 7). For detailed information,

please refer to Section 17.4.4.

Please write data to registers according to your actual needs, and the unused ones could be set to

arbitrary values.

3. Wait for Manual Encryption block to be idle. Poll register XTS_AES_STATE_REG until it reads 0 that

indicates the Manual Encryption block is idle.

4. Trigger manual encryption by writing 1 to register XTS_AES_TRIGGER_REG.

5. Wait for the encryption process completion. Poll register XTS_AES_STATE_REG until it reads 2.

Step 1 to 5 are the steps of encrypting plaintext instructions with the Manual Encryption block using the Key.

6. Write 1 to register XTS_AES_RELEASE_REG to grant SPI1 the access to the encrypted ciphertext. Then,

poll register XTS_AES_STATE_REG until it reads 3.

7. Call SPI1 to write the ciphertext in the external flash (see Chapter 20 SPI Controller (SPI)).

8. Write 1 to register

XTS_AES_DESTROY_REG to destroy the ciphertext. After this, the value of register XTS_AES_STATE_REG

will become 0.

Repeat above steps according to the amount of plaintext instructions/data that need to be encrypted.

Espressif Systems 295
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

17 External Memory Encryption and Decryption (XTS_AES) GoBack

17.6 Register Summary

The addresses in this section are relative to External Memory Encryption and Decryption base address provided

in Table 3-3 in Chapter 3 System and Memory.

Name Description Address Access

Plaintext Register Heap

XTS_AES_PLAIN_0_REG Plaintext register 0 0x0000 R/W

XTS_AES_PLAIN_1_REG Plaintext register 1 0x0004 R/W

XTS_AES_PLAIN_2_REG Plaintext register 2 0x0008 R/W

XTS_AES_PLAIN_3_REG Plaintext register 3 0x000C R/W

XTS_AES_PLAIN_4_REG Plaintext register 4 0x0010 R/W

XTS_AES_PLAIN_5_REG Plaintext register 5 0x0014 R/W

XTS_AES_PLAIN_6_REG Plaintext register 6 0x0018 R/W

XTS_AES_PLAIN_7_REG Plaintext register 7 0x001C R/W

Configuration Registers

XTS_AES_LINESIZE_REG Configures the size of target memory space 0x0040 R/W

XTS_AES_DESTINATION_REG Configures the type of the external memory 0x0044 R/W

XTS_AES_PHYSICAL_ADDRESS_REG Physical address 0x0048 R/W

Control/Status Registers

XTS_AES_TRIGGER_REG Activates AES algorithm 0x004C WO

XTS_AES_RELEASE_REG Release control 0x0050 WO

XTS_AES_DESTROY_REG Destroy control 0x0054 WO

XTS_AES_STATE_REG Status register 0x0058 RO

Version Register

XTS_AES_DATE_REG Version control register 0x005C RO

Espressif Systems 296
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

17 External Memory Encryption and Decryption (XTS_AES) GoBack

17.7 Registers

The addresses in this section are relative to External Memory Encryption and Decryption base address provided

in Table 3-3 in Chapter 3 System and Memory.

Register 17.1. XTS_AES_PLAIN_n_REG (n: 0­7) (0x0000+4*n)

XT
S_
AE
S_
PL
AI
N_
n

0x000000

31 0

Reset

XTS_AES_PLAIN_n Stores the nth 32-bit piece of plaintext. (R/W)

Register 17.2. XTS_AES_LINESIZE_REG (0x0040)

(re
se
rve
d)

0x00000000

31 1

XT
S_
AE
S_
LIN
ES
IZE

0

0

Reset

XTS_AES_LINESIZE Configures the data size of one encryption operation. (R/W)

• 0: 16 bytes;

• 1: 32 bytes.

Register 17.3. XTS_AES_DESTINATION_REG (0x0044)

(re
se
rve
d)

0x00000000

31 1

XT
S_
AE
S_
DE
ST
IN
AT
IO
N

0

0

Reset

XTS_AES_DESTINATION Configures the type of the external memory. Currently, it must be set to 0,

as the Manual Encryption block only supports flash encryption. Errors may occur if users write 1.

(R/W)

• 0: flash;

• 1: external RAM.

Espressif Systems 297
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

17 External Memory Encryption and Decryption (XTS_AES) GoBack

Register 17.4. XTS_AES_PHYSICAL_ADDRESS_REG (0x0048)

(re
se
rve
d)

0x0

31 30

XT
S_
AE
S_
PH
YS
IC
AL
_A
DD
RE
SS

0x00000000

29 0

Reset

XTS_AES_PHYSICAL_ADDRESS Pysical address. (Note that its value should be within the range of

0x0000_0000 and 0x00FF_FFFF). (R/W)

Register 17.5. XTS_AES_TRIGGER_REG (0x004C)

(re
se
rve
d)

0x00000000

31 1

XT
S_
AE
S_
TR
IG
GE
R

x

0

Reset

XTS_AES_TRIGGER Write 1 to trigger maunal encryption. (WO)

Register 17.6. XTS_AES_RELEASE_REG (0x0050)

(re
se
rve
d)

0x00000000

31 1

XT
S_
AE
S_
RE
LE
AS
E

x

0

Reset

XTS_AES_RELEASE Write 1 to grant SPI1 access to the encrypted result. (WO)

Espressif Systems 298
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

17 External Memory Encryption and Decryption (XTS_AES) GoBack

Register 17.7. XTS_AES_DESTROY_REG (0x0054)

(re
se
rve
d)

0x00000000

31 1

XT
S_
AE
S_
DE
ST
RO
Y

x

0

Reset

XTS_AES_DESTROY Write 1 to destroy encrypted result. (WO)

Register 17.8. XTS_AES_STATE_REG (0x0058)

(re
se
rve
d)

0x00000000

31 2

XT
S_
AE
S_
ST
AT
E

0x0

1 0

Reset

XTS_AES_STATE Indicates the status of the Manual Encryption block. (RO)

• 0x0 (XTS_AES_IDLE): idle;

• 0x1 (XTS_AES_BUSY): busy with encryption;

• 0x2 (XTS_AES_DONE): encryption is completed, but the encrypted result is not accessible to

SPI;

• 0x3 (XTS_AES_RELEASE): encrypted result is accessible to SPI.

Register 17.9. XTS_AES_DATE_REG (0x005C)

(re
se
rve
d)

0 0

31 30

XT
S_
AE
S_
DA
TE

0x20200623

29 0

Reset

XTS_AES_DATE Version control register. (R/W)

Espressif Systems 299
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

18 Random Number Generator (RNG) GoBack

18 Random Number Generator (RNG)

18.1 Introduction

The ESP8684 contains a true random number generator, which generates 32-bit random numbers that can be

used for cryptographical operations, among other things.

18.2 Features

The random number generator in ESP8684 generates true random numbers, which means random number

generated from a physical process, rather than by means of an algorithm. No number generated within the

specified range is more or less likely to appear than any other number.

18.3 Functional Description

Every 32-bit value that the system reads from the RNG_DATA_REG register of the random number generator is a

true random number. These true random numbers are generated based on the thermal noise in the system and

the asynchronous clock mismatch.

• Thermal noise comes from the high-speed ADC or SAR ADC or both. Whenever the high-speed ADC or

SAR ADC is enabled, bit streams will be generated and fed into the random number generator through an

XOR logic gate as random bit seeds.

• Internal fast RC oscillator clock RC_FAST_CLK (typically about 17.5 MHz, and adjustable) is an

asynchronous clock source and it increases the RNG entropy by introducing circuit metastability.

SAR ADC

Random
Number

Generator
High Speed

ADC

 Random bit
 seeds

 Random bit
 seeds

RNG_DATA_REG

XOR
XOR

RC_FAST_CLK Random bit
seeds

Figure 18­1. Noise Source

When there is noise coming from the SAR ADC, the random number generator is fed with a 1-bit entropy in one

ADC sampling cycle. Considering the maximum ADC sample rate is 128 KHz, it is thus advisable to read the

RNG_DATA_REG register also at a maximum rate of 128 kHz.

When there is noise coming from the high-speed ADC, the random number generator is fed with a 2-bit entropy

in one APB clock cycle, which is normally 80 MHz. Thus, it is advisable to read the RNG_DATA_REG register at a

maximum rate of 5 MHz to obtain the maximum entropy.

18.4 Programming Procedure

When using the random number generator, make sure at least either the SAR ADC or high-speed ADC1 is

enabled. Otherwise, pseudo-random numbers will be returned.

Espressif Systems 300
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

18 Random Number Generator (RNG) GoBack

• SAR ADC can be enabled by using the DIG ADC controller. For details, please refer to Chapter 23 On-Chip

Sensor and Analog Signal Processing.

• High-speed ADC is enabled automatically when the wireless module is enabled.

• RC_FAST_CLK2 is always enabled when the chip is on. Therefore, no need to enable this clock specifically.

Note:

1. Note that, when the wireless module is enabled, the value read from the high-speed ADC can be saturated in some

extreme cases, which lowers the entropy. Thus, it is advisable to also enable the SAR ADC as the noise source for

the random number generator for such cases.

2. RC_FAST_CLK increases the RNG entropy. However, to ensure maximum entropy, it’s recommended to always

enable an ADC source as well.

When using the random number generator, read the RNG_DATA_REG register multiple times until sufficient

random numbers have been generated. Ensure the rate at which the register is read does not exceed the

frequencies described in section 18.3 above.

18.5 Register Summary

The address in the following table is relative to the random number generator base address provided in Table 3-3

in Chapter 3 System and Memory.

Name Description Address Access

RNG_DATA_REG Random number data 0x00B0 RO

18.6 Register

The address in this section is relative to the random number generator base address provided in Table 3-3 in

Chapter 3 System and Memory.

Register 18.1. RNG_DATA_REG (0x00B0)

RN
G_
DA
TA

0x00000000

31 0

Reset

RNG_DATA Random number source. (RO)

Espressif Systems 301
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

19 UART Controller (UART)

19.1 Overview

In embedded system applications, data is required to be transferred in a simple way with minimal system

resources. This can be achieved by a Universal Asynchronous Receiver/Transmitter (UART), which flexibly

exchanges data with other peripheral devices in full-duplex mode. ESP8684 has two UART controllers

compatible with various UART devices. They support Infrared Data Association (IrDA) and RS485

transmission.

Each of the two UART controllers has a group of registers that function identically. In this chapter, the two UART

controllers are referred to as UARTn, in which n denotes 0 or 1.

A UART is a character-oriented data link for asynchronous communication between devices. Such

communication does not add clock signals to data sent. Therefore, in order to communicate successfully, the

transmitter and the receiver must operate at the same baud rate with the same stop bit and parity bit.

A UART data frame usually begins with one start bit, followed by data bits, one parity bit (optional) and one or

more stop bits. UART controllers on ESP8684 support various lengths of data bits and stop bits. These

controllers also support software and hardware flow control.

19.2 Features

Each UART controller has the following features:

• Full-duplex asynchronous communication

• Configurable baud rate, up to 2.5 Mbaud

• Automatic baud rate detection of input signals

• Data frame format:

– a START bit

– data bits, ranging from 5 ~ 8

– a parity bit

– stop bits, whose length can be 1, 1.5, 2, or 3 bits

• Special character AT_CMD detection

• Supported protocols: RS485, IrDA

• UART as wake-up source

• Software and hardware flow control

• Three clock sources that can be divided:

– 40 MHz PLL_40M_CLK

– internal fast RC oscillator FOSC_CLK

– external crystal clock XTAL_CLK

• 512 x 8-bit RAM shared by TX FIFOs and RX FIFOs of the two UART controllers

Espressif Systems 302
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

19.3 UART Architecture

Figure 19­1. UART Architecture Overview

Clock

Receiver

Tx_FIFO Tx_FIFO_Ctrl Tx_FSM

Hardware
Flow Control

Software
Flow Control

Start_Detect

Baudrate_Detect

 1

0

Wakeup_Ctrl

UART_TXD_INV

...

 1

 0
Divider

UART Core

APB BUS

RAM

UART0
Rx_FIFO

UART0
Tx_FIFO

 XTAL_CLK
 FOSC_CLK
 PLL_40M_CLK

UART_SCLK_SEL
UART_CLKDIV_REG

 Clock
 source

apb_rdata

apb_wdata fifo_rdata

fifo_rd \\

Rx_FIFO Rx_FIFO_Ctrl Rx_FSM

fifo_wdata

fifo_wr \\

 APB_CLK
 Clock source

UART_RXD_INV

 wake_up

 UART_LOOPBACK

 rxd_in

txd_out

 rtsn_out

 ctsn_in

 rts_int

 cts_int

PLL_40M_CLK

Figure 19­2. UART Architecture

Figure 19-2 shows the basic architecture of a UART controller. A UART controller works in two clock domains,

namely APB_CLK domain and Core Clock domain (the UART Core’s clock domain).

APB_CLK is derived from PLL_40M_CLK.

The UART Core’s clock is derived from the 40 MHz PLL_40M_CLK, FOSC_CLK, or external crystal clock

XTAL_CLK (for details, please refer to Chapter 6 Reset and Clock), which are selected by configuring

UART_SCLK_SEL. The selected clock source is divided by a divider to generate clock signals that drive the

Espressif Systems 303
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

UART Core. The divisor is configured by UART_CLKDIV_REG: UART_CLKDIV for the integral part, and

UART_CLKDIV_FRAG for the fractional part.

A UART controller is broken down into two parts according to functions: a transmitter and a receiver.

The transmitter contains a TX FIFO, which buffers data to be sent. Software can write data to Tx_FIFO via the

APB bus. Tx_FIFO_Ctrl controls writing and reading Tx_FIFO. When Tx_FIFO is not empty, Tx_FSM reads data

bits in the data frame via Tx_FIFO_Ctrl, and converts them into a bitstream. The levels of output signal txd_out

can be inverted by configuring UART_TXD_INV field.

The receiver contains a RX FIFO, which buffers data to be processed. The levels of input signal rxd_in can be

inverted by configuring UART_RXD_INV field. Baudrate_Detect measures the baud rate of input signal rxd_in by

detecting its minimum pulse width. Start_Detect detects the start bit in a data frame. If the start bit is detected,

Rx_FSM stores data bits in the data frame into Rx_FIFO by Rx_FIFO_Ctrl. Software can read data from Rx_FIFO

via the APB bus.

HW_Flow_Ctrl controls rxd_in and txd_out data flows by standard UART RTS and CTS flow control signals

(rtsn_out and ctsn_in). SW_Flow_Ctrl controls data flows by automatically adding special characters to outgoing

data and detecting special characters in incoming data. When a UART controller is in Light-sleep mode (see

Chapter 9 Low-power Management (RTC_CNTL) for more details), Wakeup_Ctrl counts up rising edges of rxd_in.

When the number reaches (UART_ACTIVE_THRESHOLD + 2), a wake_up signal is generated and sent to RTC,

which then wakes up the ESP8684 chip.

19.4 Functional Description

19.4.1 Clock and Reset

Specific functional blocks of UART controllers are asynchronous. Their register configuration module, TX FIFO

and RX FIFO are in APB_CLK domain, while the UART Core that controls transmission and reception is in Core

Clock domain. The three clock sources of the UART core, namely PLL_40M_CLK, FOSC_CLK and external

crystal clock XTAL_CLK, are selected by configuring UART_SCLK_SEL. The selected clock source is divided by

a divider. This divider supports fractional frequency division: UART_SCLK_DIV_NUM field is the integral part,

UART_SCLK_DIV_B field is the numerator of the fractional part, and UART_SCLK_DIV_A is the denominator of

the fractional part. The divisor ranges from 1 to 256.

When the frequency of the UART Core’s clock is higher than the frequency needed to generate baud rate, the

UART Core can be clocked at a lower frequency by the divider, in order to reduce power consumption. Usually,

the UART Core’s clock frequency is lower than the APB_CLK’s frequency, and can be divided by the largest

divisor value when higher than the frequency needed to generate baud rate. The frequency of the UART Core’s

clock can also be at most twice higher than the APB_CLK. The clock for the UART transmitter and the UART

receiver can be controlled independently. To enable the clock for the UART transmitter, UART_TX_SCLK_EN

shall be set; to enable the clock for the UART receiver, UART_RX_SCLK_EN shall be set.

To ensure that the configured register values are synchronized from APB_CLK domain to Core Clock domain,

please follow procedures in Section19.5.

To reset the whole UART, please:

• enable the clock for UART RAM by setting SYSTEM_UART_MEM_CLK_EN to 1;

• enable APB_CLK for UARTn by setting SYSTEM_UARTn_CLK_EN to 1;

Espressif Systems 304
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

• clear SYSTEM_UARTn_RST to 0;

• write 1 to UART_RST_CORE;

• write 1 to SYSTEM_UARTn_RST;

• clear SYSTEM_UARTn_RST to 0;

• clear UART_RST_CORE to 0.

Note:

It is not recommended to reset the APB clock domain module (SYSTEM_UARTn_RST) or UART Core (UART_RST_CORE)

only.

19.4.2 UART RAM

Figure 19­3. UART Controllers Sharing RAM

The two UART controllers on ESP8684 share 512 × 8 bits of FIFO RAM. As Figure 19-3 illustrates, RAM is divided

into 4 blocks, each has 128 × 8 bits. Figure 19-3 shows how many RAM blocks are allocated to TX FIFOs and RX

FIFOs of the two UART controllers by default. UARTn Tx_FIFO can be expanded by configuring UART_TX_SIZE,

while UARTn Rx_FIFO can be expanded by configuring UART_RX_SIZE. Some limits are imposed:

• UART0 Tx_FIFO can be increased up to 4 blocks (the whole RAM);

• UART1 Tx_FIFO can be increased up to 3 blocks (from offset 128 to the end address);

• UART0 Rx_FIFO can be increased up to 2 blocks (from offset 256 to the end address);

• UART1 Rx_FIFO cannot be increased.

Please note that starting addresses of all FIFOs are fixed, so expanding one FIFO may take up the default space

of other FIFOs. For example, by setting UART_TX_SIZE of UART0 to 2, the size of UART0 Tx_FIFO is increased

by 128 bytes (from offset 0 to offset 255). In this case, UART0 Tx_FIFO takes up the default space for UART1

Tx_FIFO, and UART1’s transmitting function cannot be used as a result.

When neither of the two UART controllers is active, RAM could enter low-power mode by setting

UART_MEM_FORCE_PD.

UART0 Tx_FIFO and UART1 Tx_FIFO are reset by setting UART_TXFIFO_RST. UART0 Rx_FIFO and UART1

Rx_FIFO are reset by setting UART_RXFIFO_RST.

Data to be sent is written to TX FIFO via the APB bus, read automatically and converted from a frame into a

bitstream by hardware Tx_FSM; data received is converted from a bitstream into a frame by hardware Rx_FSM,

Espressif Systems 305
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

written into RX FIFO, and then stored into RAM via the APB bus.

The empty signal threshold for Tx_FIFO is configured by setting UART_TXFIFO_EMPTY_THRHD. When data

stored in Tx_FIFO is less than UART_TXFIFO_EMPTY_THRHD, a UART_TXFIFO_EMPTY_INT interrupt is

generated. The full signal threshold for Rx_FIFO is configured by setting UART_RXFIFO_FULL_THRHD. When

data stored in Rx_FIFO is greater than UART_RXFIFO_FULL_THRHD, a UART_RXFIFO_FULL_INT interrupt is

generated. In addition, when Rx_FIFO receives more data than its capacity, a UART_RXFIFO_OVF_INT interrupt

is generated.

UARTn can access FIFO via register UART_FIFO_REG. You can put data into TX FIFO by writing

UART_RXFIFO_RD_BYTE, and get data in RX FIFO by reading UART_RXFIFO_RD_BYTE.

19.4.3 Baud Rate Generation and Detection

19.4.3.1 Baud Rate Generation

Before a UART controller sends or receives data, the baud rate should be configured by setting corresponding

registers. The baud rate generator of a UART controller functions by dividing the input clock source. It can divide

the clock source by a fractional amount. The divisor is configured by UART_CLKDIV_REG: UART_CLKDIV for the

integral part, and UART_CLKDIV_FRAG for the fractional part. When using the 40 MHz input clock, the UART

controller supports a maximum baud rate of 2.5 Mbaud.

The divisor of the baud rate divider is equal to

UART_CLKDIV +
UART_CLKDIV _FRAG

16

meaning that the final baud rate is equal to

INPUT_FREQ

UART_CLKDIV + UART _CLKDIV _FRAG
16

where INPUT_FREQ is the frequency of UART Core’s source clock. For example, if UART_CLKDIV = 694 and

UART_CLKDIV_FRAG = 7, then the divisor value is

694 +
7

16
= 694.4375

When UART_CLKDIV_FRAG is 0, the baud rate generator is an integer clock divider where an output pulse is

generated every UART_CLKDIV input pulses.

When UART_CLKDIV_FRAG is not 0, the divider is fractional and the output baud rate clock pulses are not

strictly uniform. As shown in Figure 19-4, for every 16 output pulses, the generator divides either (UART_CLKDIV

+ 1) input pulses or UART_CLKDIV input pulses per output pulse. A total of UART_CLKDIV_FRAG output pulses

are generated by dividing (UART_CLKDIV + 1) input pulses, and the remaining (16 - UART_CLKDIV_FRAG)

output pulses are generated by dividing UART_CLKDIV input pulses.

The output pulses are interleaved as shown in Figure 19-4 below, to make the output timing more uniform:

Espressif Systems 306
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Figure 19­4. UART Controllers Division

To support IrDA (see Section 19.4.6 for details), the fractional clock divider for IrDA data transmission generates

clock signals divided by 16 × UART_CLKDIV_REG. This divider works similarly as the one elaborated above: it

takes UART_CLKDIV/16 as the integer value and the lowest four bits of UART_CLKDIV as the fractional

value.

19.4.3.2 Baud Rate Detection

Automatic baud rate detection (Autobaud) on UARTs is enabled by setting UART_AUTOBAUD_EN. The

Baudrate_Detect module shown in Figure 19-2 filters any noise whose pulse width is shorter than

UART_GLITCH_FILT.

Before communication starts, the transmitter could send random data to the receiver for baud rate detection.

UART_LOWPULSE_MIN_CNT stores the minimum low pulse width, UART_HIGHPULSE_MIN_CNT stores the

minimum high pulse width, UART_POSEDGE_MIN_CNT stores the minimum pulse width between two rising

edges, and UART_NEGEDGE_MIN_CNT stores the minimum pulse width between two falling edges. These four

fields are read by software to determine the transmitter’s baud rate.

Figure 19­5. The Timing Diagram of Weak UART Signals Along Falling Edges

Baud rate Buart can be determined in the following three ways:

1. Normally, to avoid sampling erroneous data along rising or falling edges in metastable state, which results in

inaccuracy of UART_LOWPULSE_MIN_CNT or UART_HIGHPULSE_MIN_CNT, use a weighted average of

these two values to eliminate errors. In this case, baud rate is calculated as follows:

Buart =
fclk

(UART_LOWPULSE_MIN_CNT + UART_HIGHPULSE_MIN_CNT + 2)/2

where fclk stands for clock frequency.

Espressif Systems 307
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

2. If UART signals are weak along falling edges as shown in Figure 19-5, which leads to inaccurate average of

UART_LOWPULSE_MIN_CNT and UART_HIGHPULSE_MIN_CNT, use UART_POSEDGE_MIN_CNT to

determine the transmitter’s baud rate as follows:

Buart =
fclk

(UART_POSEDGE_MIN_CNT + 1)/2

3. If UART signals are weak along rising edges, use UART_NEGEDGE_MIN_CNT to determine the

transmitter’s baud rate as follows:

Buart =
fclk

(UART_NEGEDGE_MIN_CNT + 1)/2

19.4.4 UART Data Frame

Figure 19­6. Structure of UART Data Frame

Figure 19-6 shows the basic structure of a data frame. A frame starts with one START bit, and ends with STOP

bits which can be 1, 1.5, 2 or 3 bits long, configured by UART_STOP_BIT_NUM, UART_DL1_EN and

UART_DL0_EN. The START bit is logical low, whereas STOP bits are logical high.

The actual data length can be anywhere between 5 ~ 8 bit, configured by UART_BIT_NUM. When

UART_PARITY_EN is set, a parity bit is added after data bits. UART_PARITY is used to choose even parity or

odd parity. When the receiver detects a parity bit error in data received, a UART_PARITY_ERR_INT interrupt is

generated, and the data received is still stored into RX FIFO. When the receiver detects a framing error (i.e. the

sampled stop bit is not 1), a UART_FRM_ERR_INT interrupt is generated, and the data received by default is

stored into RX FIFO.

If all data in Tx_FIFO has been sent, a UART_TX_DONE_INT interrupt is generated. After this, if the

UART_TXD_BRK bit is set, then the transmitter will send several NULL characters in which the TX data line is

logical low. The number of NULL characters is configured by UART_TX_BRK_NUM. Once the transmitter has

sent all NULL characters, a UART_TX_BRK_DONE_INT interrupt is generated. The minimum interval between

data frames can be configured using UART_TX_IDLE_NUM. If the transmitter stays idle for UART_TX_IDLE_NUM

or more time, a UART_TX_BRK_IDLE_DONE_INT interrupt is generated.

Figure 19­7. AT_CMD Character Structure

Figure 19-7 is the structure of a special character AT_CMD. If the receiver constantly receives AT_CMD_CHAR

and the following conditions are met, a UART_AT_CMD_CHAR_DET_INT interrupt is generated.

Espressif Systems 308
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

PRELIMINARY

19 UART Controller (UART) GoBack

• The interval between the first AT_CMD_CHAR and the last non-AT_CMD_CHAR character is at least UART

_PRE_IDLE_NUM cycles.

• The interval between two AT_CMD_CHAR characters is less than UART_RX_GAP_TOUT cycles.

• The number of AT_CMD_CHAR characters is equal to or greater than UART_CHAR_NUM.

• The interval between the last AT_CMD_CHAR character and next non-AT_CMD_CHAR character is at least

UART_POST_IDLE_NUM cycles.

19.4.5 RS485

The two UART controllers support RS485 protocol. This protocol uses differential signals to transmit data, so it

can communicate over longer distances at higher bit rates than RS232. RS485 has two-wire half-duplex mode

and four-wire full-duplex mode. UART controllers support two-wire half-duplex transmission and bus snooping.

In a two-wire RS485 multidrop network, there can be 32 slaves at most.

19.4.5.1 Driver Control

As shown in Figure 19-8, in a two-wire multidrop network, an external RS485 transceiver is needed for differential

to single-ended conversion. A RS485 transceiver contains a driver (D) and a receiver (R). When a UART controller

is not in transmitter mode, the connection to the differential line can be broken by disabling the driver (D). When

DE is 1, the driver is enabled; when DE is 0, the driver is disabled.

The UART receiver converts differential signals to single-ended signals via the receiver (R). RE is the enable

control signal for the receiver. When RE is 0, the receiver is enabled; when RE is 1, the receiver is disabled. If RE

is configured as 0, the UART controller is allowed to snoop data on the bus, including data sent by itself.

DE can be controlled by either software or hardware. To reduce the cost of software, in our design, DE is

controlled by hardware (can still be controlled by software). As shown in Figure 19-8, DE is connected to

dtrn_out of UART (please refer to Section 19.4.8.1 for more details).

transceiver

Figure 19­8. Driver Control Diagram in RS485 Mode

19.4.5.2 Turnaround Delay

By default, the two UART controllers work in receiver mode. When a UART controller is switched from transmitter

mode to receiver mode, the RS485 protocol requires a turnaround delay of one cycle after the stop bit for stable

data transmission. The UART transmitter supports adding a turnaround delay of one cycle before the start bit or

after the stop bit. When UART_DL0_EN is set, a turnaround delay of one cycle is added before the start bit;

when UART_DL1_EN is set, a turnaround delay of one cycle is added after the stop bit.

Espressif Systems 309
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

19.4.5.3 Bus Snooping

In a two-wire multidrop network, UART controllers support bus snooping if RE of the external RS485 transceiver

is 0. By default, a UART controller is not allowed to transmit and receive data simultaneously. If

UART_RS485TX_RX_EN is set and the external RS485 transceiver is configured as in Figure 19-8, a UART

controller may receive data in transmitter mode and snoop the bus. If UART_RS485RXBY_TX_EN is set, a UART

controller may transmit data in receiver mode.

The two UART controllers can snoop data sent by themselves. In transmitter mode, when a UART controller

detects a collision between data sent and data received, a UART_RS485_CLASH_INT is generated; when a

UART controller detects a framing error, a UART_RS485_FRM_ERR_INT interrupt is generated; when a UART

controller detects a polarity error, a UART_RS485_PARITY_ERR_INT is generated.

19.4.6 IrDA

IrDA protocol consists of three layers, namely the physical layer, the link access protocol, and the link

management protocol. The two UART controllers implement IrDA’s physical layer. In IrDA encoding, a UART

controller supports data rates up to 115.2 kbit/s (SIR, or serial infrared mode). As shown in Figure 19-9, the IrDA

encoder converts a NRZ (non-return to zero code) signal to a RZI (return to zero inverted code) signal and sends

it to the external driver and infrared LED. This encoder uses modulated signals whose pulse width is 3/16 bits

high level to indicate logic “0”, and low levels to indicate logic “1”. The IrDA decoder receives signals from the

infrared receiver and converts them to NRZ signals. In most cases, the receiver is high when it is idle, and the

encoder output polarity is the opposite of the decoder input polarity. If a low pulse is detected, it indicates that a

start bit has been received.

When IrDA function is enabled, one bit is divided into 16 clock cycles. If the bit to be sent is zero, then the 9th,

10th and 11th clock cycle is high.

Figure 19­9. The Timing Diagram of Encoding and Decoding in SIR mode

The IrDA transceiver is half-duplex, meaning that it cannot send and receive data simultaneously. As shown in

Figure 19-10, IrDA function is enabled by setting UART_IRDA_EN. When UART_IRDA_TX_EN is set (high), the

IrDA transceiver is enabled to send data and not allowed to receive data; when UART_IRDA_TX_EN is reset (low),

Espressif Systems 310
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

the IrDA transceiver is enabled to receive data and not allowed to send data.

IrDA Enc
UART_TXD

1

0

UART_IRDA_EN UART_IRDA_TX_EN

IrDA Dec

1

0

UART
Transmitter/Receiver

UART_RXD

UART_TXD_int

UART_RXD_int

IrDA

Figure 19­10. IrDA Encoding and Decoding Diagram

19.4.7 Wake­up

UART0 and UART1 can be set as wake-up source. When a UART controller is in Light-sleep mode, Wakeup_Ctrl

counts up the rising edges of rxd_in. When the number of rising edges is greater than

(UART_ACTIVE_THRESHOLD + 2), a wake_up signal is generated and sent to RTC, which then wakes up

ESP8684.

19.4.8 Flow Control

UART controllers have two ways to control data flow, namely hardware flow control and software flow control.

Hardware flow control is achieved using output signal rtsn_out and input signal dsrn_in. Software flow control is

achieved by inserting special characters in data flow sent and detecting special characters in data flow

received.

Espressif Systems 311
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

19.4.8.1 Hardware Flow Control

 UART_LOOPBACK

 1

 0

Comparatorrts_int

UART_RX_FLOW_EN

1

0

UART_SW_RTS

 cts_int

UART_RTS_INV

rtsn_out

UART_CTS_INV

ctsn_in

UART_LOOPBACK

 1

 0

DE Control Logic

UART_RS485_EN

1

0

UART_SW_DTR

UART_DTR_INV

dtrn_out

UART_DSR_INV

dsrn_in

UART_RXFIFO_CNT
UART_RX_FLOW_THRHD

Figure 19­11. Hardware Flow Control Diagram

Figure 19-11 shows hardware flow control of a UART controller. Hardware flow control uses output signal

rtsn_out and input signal dsrn_in. Figure 19-12 illustrates how these signals are connected between UART on

ESP8684 (hereinafter referred to as IU0) and the external UART (hereinafter referred to as EU0).

When rtsn_out of IU0 is low, EU0 is allowed to send data; when rtsn_out of IU0 is high, EU0 is notified to stop

sending data until rtsn_out of IU0 returns to low. The output signal rtsn_out can be controlled in two ways.

• Software control: Enter this mode by clearing UART_RX_FLOW_EN to 0. In this mode, the level of rtsn_out

is changed by configuring UART_SW_RTS.

• Hardware control: Enter this mode by setting UART_RX_FLOW_EN to 1. In this mode, rtsn_out is pulled

high when data in Rx_FIFO exceeds UART_RX_FLOW_THRHD.

Figure 19­12. Connection between Hardware Flow Control Signals

Espressif Systems 312
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

When ctsn_in of IU0 is low, IU0 is allowed to send data; when ctsn_in is high, IU0 is not allowed to send data.

When IU0 detects an edge change of ctsn_in, a UART_CTS_CHG_INT interrupt is generated.

If dtrn_out of IU0 is high, it indicates that IU0 is ready to transmit data. dtrn_out is generated by configuring the

UART_SW_DTR field. When the IU0 transmitter detects a edge change of dsrn_in, a UART_DSR_CHG_INT

interrupt is generated. After this interrupt is detected, software can obtain the level of input signal dsrn_in by

reading UART_DSRN. If dsrn_in is high, it indicates that EU0 is ready to transmit data.

In a two-wire RS485 multidrop network enabled by setting UART_RS485_EN, dtrn_out is generated by hardware

(i.e. DE control logic in Figure 19-12) and used for transmit/receive turnaround. When data transmission starts,

dtrn_out is pulled high and the external driver is enabled; when data transmission completes, dtrn_out is pulled

low and the external driver is disabled. Please note that when there is turnaround delay of one cycle added after

the stop bit, dtrn_out is pulled low after the delay.

UART loopback test is enabled by setting UART_LOOPBACK. In the test, UART output signal txd_out is

connected to its input signal rxd_in, rtsn_out is connected to ctsn_in, and dtrn_out is connected to dsrn_out. If

data sent matches data received, it indicates that UART controllers are working properly.

19.4.8.2 Software Flow Control

Instead of ctsn_in and rtsn_out signals, software flow control uses XON/XOFF characters to start or stop data

transmission. Such flow control is enabled by setting UART_SW_FLOW_CON_EN to 1.

When using software flow control, hardware automatically detects if there are XON/XOFF characters in data flow

received, and generate a UART_SW_XOFF_INT or a UART_SW_XON_INT interrupt accordingly. If an XOFF

character is detected, the transmitter stops data transmission once the current byte has been transmitted; if an

XON character is detected, the transmitter starts data transmission. In addition, software can force the

transmitter to stop sending data by setting UART_FORCE_XOFF, or to start sending data by setting

UART_FORCE_XON.

Software determines whether to insert flow control characters according to the remaining room in RX FIFO. When

UART_SEND_XOFF is set, the transmitter sends an XOFF character configured by UART_XOFF_CHAR after the

current byte in transmission; when UART_SEND_XON is set, the transmitter sends an XON character configured

by UART_XON_CHAR after the current byte in transmission. If the RX FIFO of a UART controller stores more data

than UART_XOFF_THRESHOLD, UART_SEND_XOFF is set by hardware. As a result, the transmitter sends an

XOFF character configured by UART_XOFF_CHAR after the current byte in transmission. If the RX FIFO of a

UART controller stores less data than UART_XON_THRESHOLD, UART_SEND_XON is set by hardware. As a

result, the transmitter sends an XON character configured by UART_XON_CHAR after the current byte in

transmission.

19.4.9 UART Interrupts

• UART_AT_CMD_CHAR_DET_INT: Triggered when the receiver detects an AT_CMD character.

• UART_RS485_CLASH_INT: Triggered when a collision is detected between the transmitter and the receiver

in RS485 mode.

• UART_RS485_FRM_ERR_INT: Triggered when an error is detected in the data frame sent by the

transmitter in RS485 mode.

• UART_RS485_PARITY_ERR_INT: Triggered when an error is detected in the parity bit sent by the

transmitter in RS485 mode.

Espressif Systems 313
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

• UART_TX_DONE_INT: Triggered when all data in the transmitter’s TX FIFO has been sent.

• UART_TX_BRK_IDLE_DONE_INT: Triggered when the transmitter stays idle for the minimum interval

(threshold) after sending the last data bit.

• UART_TX_BRK_DONE_INT: Triggered when the transmitter has sent all NULL characters after all data in TX

FIFO had been sent.

• UART_GLITCH_DET_INT: Triggered when the receiver detects a glitch in the middle of the start bit.

• UART_SW_XOFF_INT: Triggered when UART_SW_FLOW_CON_EN is set and the receiver receives a XOFF

character.

• UART_SW_XON_INT: Triggered when UART_SW_FLOW_CON_EN is set and the receiver receives a XON

character.

• UART_RXFIFO_TOUT_INT: Triggered when the receiver takes more time than UART_RX_TOUT_THRHD to

receive one byte.

• UART_BRK_DET_INT: Triggered when the receiver detects a NULL character after stop bits.

• UART_CTS_CHG_INT: Triggered when the receiver detects an edge change of CTSn signals.

• UART_DSR_CHG_INT: Triggered when the receiver detects an edge change of DSRn signals.

• UART_RXFIFO_OVF_INT: Triggered when the receiver receives more data than the capacity of RX FIFO.

• UART_FRM_ERR_INT: Triggered when the receiver detects a framing error.

• UART_PARITY_ERR_INT: Triggered when the receiver detects a parity error.

• UART_TXFIFO_EMPTY_INT: Triggered when TX FIFO stores less data than what

UART_TXFIFO_EMPTY_THRHD specifies.

• UART_RXFIFO_FULL_INT: Triggered when the receiver receives more data than what

UART_RXFIFO_FULL_THRHD specifies.

• UART_WAKEUP_INT: Triggered when UART is woken up.

19.5 Programming Procedures

19.5.1 Register Type

All UART registers are in APB_CLK domain. According to whether clock domain crossing and synchronization

are required, UART registers that can be configured by software are classified into three types, namely immediate

registers, synchronous registers, and static registers. Immediate registers are read in APB_CLK domain, and take

effect after configured via the APB bus. Synchronous registers are read in Core Clock domain, and take effect

after synchronization. Static registers are also read in Core Clock domain, but would not change dynamically.

Therefore, for static registers clock domain crossing is not required, and software can turn on and off the clock for

the UART transmitter or receiver to ensure that the configuration sampled in Core Clock domain is correct.

19.5.1.1 Synchronous Registers

Read in Core Clock domain, synchronous registers implement the clock domain crossing design to ensure that

their values sampled in Core Clock domain are correct. These registers as listed in Table 19-1 are configured as

follows:

Espressif Systems 314
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

• Enable register synchronization by clearing UART_UPDATE_CTRL to 0;

• Wait for UART_REG_UPDATE to become 0, which indicates the completion of last synchronization;

• Configure synchronous registers;

• Synchronize the configured values to Core Clock domain by writting 1 to UART_REG_UPDATE.

Table 19­1. UARTn Synchronous Registers

Register Field

UART_CLKDIV_REG UART_CLKDIV_FRAG[3:0]

UART_CLKDIV[11:0]

UART_CONF0_REG UART_AUTOBAUD_EN

UART_ERR_WR_MASK

UART_TXD_INV

UART_RXD_INV

UART_IRDA_EN

UART_TX_FLOW_EN

UART_LOOPBACK

UART_IRDA_RX_INV

UART_IRDA_TX_EN

UART_IRDA_WCTL

UART_IRDA_TX_EN

UART_IRDA_DPLX

UART_STOP_BIT_NUM

UART_BIT_NUM

UART_PARITY_EN

UART_PARITY

UART_FLOW_CONF_REG UART_SEND_XOFF

UART_SEND_XON

UART_FORCE_XOFF

UART_FORCE_XON

UART_XONOFF_DEL

UART_SW_FLOW_CON_EN

UART_TXBRK_CONF_REG UART_RS485_TX_DLY_NUM[3:0]

UART_RS485_RX_DLY_NUM

UART_RS485RXBY_TX_EN

UART_RS485TX_RX_EN

UART_DL1_EN

UART_DL0_EN

UART_RS485_EN

19.5.1.2 Static Registers

Static registers, though also read in Core Clock domain, would not change dynamically when UART controllers

are at work, so they do not implement the clock domain crossing design. These registers must be configured

when the UART transmitter or receiver is not at work. In this case, software can turn off the clock for the UART

Espressif Systems 315
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

transmitter or receiver, so that static registers are not sampled in their metastable state. When software turns on

the clock, the configured values are stable to be correctly sampled. Static registers as listed in Table 19-2 are

configured as follows:

• Turn off the clock for the UART transmitter by clearing UART_TX_SCLK_EN, or the clock for the UART

receiver by clearing UART_RX_SCLK_EN, depending on which one (transmitter or receiver) is not at work;

• Configure static registers;

• Turn on the clock for the UART transmitter by writing 1 to UART_TX_SCLK_EN, or the clock for the UART

receiver by writing 1 to UART_RX_SCLK_EN.

Table 19­2. UARTn Static Registers

Register Field

UART_RX_FILT_REG UART_GLITCH_FILT_EN

UART_GLITCH_FILT[7:0]

UART_SLEEP_CONF_REG UART_ACTIVE_THRESHOLD[9:0]

UART_SWFC_CONF0_REG UART_XOFF_CHAR[7:0]

UART_SWFC_CONF1_REG UART_XON_CHAR[7:0]

UART_IDLE_CONF_REG UART_TX_IDLE_NUM[9:0]

UART_AT_CMD_PRECNT_REG UART_PRE_IDLE_NUM[15:0]

UART_AT_CMD_POSTCNT_REG UART_POST_IDLE_NUM[15:0]

UART_AT_CMD_GAPTOUT_REG UART_RX_GAP_TOUT[15:0]

UART_AT_CMD_CHAR_REG UART_CHAR_NUM[7:0]

UART_AT_CMD_CHAR[7:0]

19.5.1.3 Immediate Registers

Except those listed in Table 19-1 and Table 19-2, registers that can be configured by software are immediate

registers read in APB_CLK domain, such as interrupt and FIFO configuration registers.

19.5.2 Detailed Steps

Figure 19-13 illustrates the process to program UART controllers, namely initialize UART, configure registers,

enable the UART transmitter or receiver, and finish data transmission.

Espressif Systems 316
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Figure 19­13. UART Programming Procedures

19.5.2.1 Initializing UARTn

To initialize UARTn:

• enable the clock for UART RAM by setting SYSTEM_UART_MEM_CLK_EN to 1;

• enable APB_CLK for UARTn by setting SYSTEM_UARTn_CLK_EN to 1;

• clear SYSTEM_UARTn_RST;

Espressif Systems 317
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

• write 1 to UART_RST_CORE;

• write 1 to SYSTEM_UARTn_RST;

• clear SYSTEM_UARTn_RST;

• clear UART_RST_CORE;

• enable register synchronization by clearing UART_UPDATE_CTRL.

19.5.2.2 Configuring UARTn Communication

To configure UARTn communication:

• wait for UART_REG_UPDATE to become 0, which indicates the completion of last synchronization;

• configure static registers (if any) following Section 19.5.1.2;

• select the clock source via UART_SCLK_SEL;

• configure divisor of the divider via UART_SCLK_DIV_NUM, UART_SCLK_DIV_A, and UART_SCLK_DIV_B;

• configure the baud rate for transmission via UART_CLKDIV and UART_CLKDIV_FRAG;

• configure data length via UART_BIT_NUM;

• configure odd or even parity check via UART_PARITY_EN and UART_PARITY;

• optional steps depending on your application ...

• synchronize the configured values to Core Clock domain by writing 1 to UART_REG_UPDATE.

19.5.2.3 Enabling UARTn

To enable UARTn transmitter:

• configure TX FIFO’s empty threshold via UART_TXFIFO_EMPTY_THRHD;

• disable UART_TXFIFO_EMPTY_INT interrupt by clearing UART_TXFIFO_EMPTY_INT_ENA;

• write data to be sent to UART_RXFIFO_RD_BYTE;

• clear UART_TXFIFO_EMPTY_INT interrupt by setting UART_TXFIFO_EMPTY_INT_CLR;

• enable UART_TXFIFO_EMPTY_INT interrupt by setting UART_TXFIFO_EMPTY_INT_ENA;

• detect UART_TXFIFO_EMPTY_INT and wait for the completion of data transmission.

To enable UARTn receiver:

• configure RX FIFO’s full threshold via UART_RXFIFO_FULL_THRHD;

• enable UART_RXFIFO_FULL_INT interrupt by setting UART_RXFIFO_FULL_INT_ENA;

• detect UART_TXFIFO_FULL_INT and wait until the RX FIFO is full;

• read data from RX FIFO via UART_RXFIFO_RD_BYTE, and obtain the number of bytes received in RX FIFO

via UART_RXFIFO_CNT.

Espressif Systems 318
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

19.6 Register Summary

The addresses in this section are relative to UART Controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Name Description Address Access

FIFO Configuration

UART_FIFO_REG FIFO data register 0x0000 RO

UART_MEM_CONF_REG UART threshold and allocation configuration 0x0060 R/W

UART Interrupt Register

UART_INT_RAW_REG Raw interrupt status 0x0004 R/WTC/SS

UART_INT_ST_REG Masked interrupt status 0x0008 RO

UART_INT_ENA_REG Interrupt enable bits 0x000C R/W

UART_INT_CLR_REG Interrupt clear bits 0x0010 WT

Configuration Register

UART_CLKDIV_REG Clock divider configuration 0x0014 R/W

UART_RX_FILT_REG RX filter configuration 0x0018 R/W

UART_CONF0_REG Configuration register 0 0x0020 R/W

UART_CONF1_REG Configuration register 1 0x0024 R/W

UART_FLOW_CONF_REG Software flow control configuration 0x0034 varies

UART_SLEEP_CONF_REG Sleep mode configuration 0x0038 R/W

UART_SWFC_CONF0_REG
Software flow control character configuration

register 0
0x003C R/W

UART_SWFC_CONF1_REG
Software flow control character configuration

register 1
0x0040 R/W

UART_TXBRK_CONF_REG TX break character configuration 0x0044 R/W

UART_IDLE_CONF_REG Frame end idle time configuration 0x0048 R/W

UART_RS485_CONF_REG RS485 mode configuration 0x004C R/W

UART_CLK_CONF_REG UART core clock configuration 0x0078 R/W

Status Register

UART_STATUS_REG UART status register 0x001C RO

UART_MEM_TX_STATUS_REG TX FIFO write and read offset address 0x0064 RO

UART_MEM_RX_STATUS_REG RX FIFO write and read offset address 0x0068 RO

UART_FSM_STATUS_REG UART transmitter and receiver status 0x006C RO

Autobaud Register

UART_LOWPULSE_REG Autobaud minimum low pulse duration register 0x0028 RO

UART_HIGHPULSE_REG
Autobaud minimum high pulse duration

register
0x002C RO

UART_RXD_CNT_REG Autobaud edge change count register 0x0030 RO

UART_POSPULSE_REG Autobaud high pulse register 0x0070 RO

UART_NEGPULSE_REG Autobaud low pulse register 0x0074 RO

AT Escape Sequence Selection Configuration

UART_AT_CMD_PRECNT_REG Pre-sequence timing configuration 0x0050 R/W

UART_AT_CMD_POSTCNT_REG Post-sequence timing configuration 0x0054 R/W

UART_AT_CMD_GAPTOUT_REG Timeout configuration 0x0058 R/W

Espressif Systems 319
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Name Description Address Access

UART_AT_CMD_CHAR_REG AT escape sequence detection configuration 0x005C R/W

Version Register

UART_DATE_REG UART version control register 0x007C R/W

UART_ID_REG UART ID register 0x0080 varies

Espressif Systems 320
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

19.7 Registers

The addresses in this section are relative to UART Controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Register 19.1. UART_FIFO_REG (0x0000)

(re
se
rve
d)

0 0

31 8

UA
RT
_R
XF
IFO
_R
D_
BY
TE

0

7 0

Reset

UART_RXFIFO_RD_BYTE UARTn accesses FIFO via this field. (RO)

Register 19.2. UART_MEM_CONF_REG (0x0060)

(re
se
rve
d)

0 0 0 0

31 28

UA
RT
_M
EM
_F
OR
CE
_P
U

0

27

UA
RT
_M
EM
_F
OR
CE
_P
D

0

26

UA
RT
_R
X_
TO
UT
_T
HR
HD

0xa

25 16

UA
RT
_R
X_
FL
OW

_T
HR
HD

0x0

15 7

UA
RT
_T
X_
SI
ZE

0x1

6 4

UA
RT
_R
X_
SI
ZE

1

3 1

(re
se
rve
d)

0

0

Reset

UART_RX_SIZE This field is used to configure the amount of RAM allocated for RX FIFO. The default

number is 128 bytes. (R/W)

UART_TX_SIZE This field is used to configure the amount of RAM allocated for TX FIFO. The default

number is 128 bytes. (R/W)

UART_RX_FLOW_THRHD This field is used to configure the maximum amount of data bytes that

can be received when hardware flow control works. (R/W)

UART_RX_TOUT_THRHD This field is used to configure the threshold time that the receiver

takes to receive one byte, in the unit of bit time (the time it takes to transfer one bit). The

UART_RXFIFO_TOUT_INT interrupt will be triggered when the receiver takes more time to receive

one byte with UART RX_TOUT_EN set to 1. (R/W)

UART_MEM_FORCE_PD Set this bit to force power down UART RAM. (R/W)

UART_MEM_FORCE_PU Set this bit to force power up UART RAM. (R/W)

Espressif Systems 321
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.3. UART_INT_RAW_REG (0x0004)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UA
RT
_W
AK
EU
P_
IN
T_
RA
W

0

19

UA
RT
_A
T_
CM

D_
CH
AR
_D
ET
_IN
T_
RA
W

0

18

UA
RT
_R
S4
85
_C
LA
SH
_IN
T_
RA
W

0

17

UA
RT
_R
S4
85
_F
RM
_E
RR
_IN
T_
RA
W

0

16

UA
RT
_R
S4
85
_P
AR
ITY
_E
RR
_IN
T_
RA
W

0

15

UA
RT
_T
X_
DO
NE
_IN
T_
RA
W

0

14

UA
RT
_T
X_
BR
K_
ID
LE
_D
ON
E_
IN
T_
RA
W

0

13

UA
RT
_T
X_
BR
K_
DO
NE
_IN
T_
RA
W

0

12

UA
RT
_G
LIT
CH
_D
ET
_IN
T_
RA
W

0

11

UA
RT
_S
W
_X
OF
F_
IN
T_
RA
W

0

10

UA
RT
_S
W
_X
ON
_IN
T_
RA
W

0

9

UA
RT
_R
XF
IFO
_T
OU
T_
IN
T_
RA
W

0

8

UA
RT
_B
RK
_D
ET
_IN
T_
RA
W

0

7

UA
RT
_C
TS
_C
HG
_IN
T_
RA
W

0

6

UA
RT
_D
SR
_C
HG
_IN
T_
RA
W

0

5

UA
RT
_R
XF
IFO
_O
VF
_IN
T_
RA
W

0

4

UA
RT
_F
RM
_E
RR
_IN
T_
RA
W

0

3

UA
RT
_P
AR
ITY
_E
RR
_IN
T_
RA
W

0

2

UA
RT
_T
XF
IFO
_E
M
PT
Y_
IN
T_
RA
W

1

1

UA
RT
_R
XF
IFO
_F
UL
L_
IN
T_
RA
W

0

0

Reset

UART_RXFIFO_FULL_INT_RAW This interrupt raw bit turns to high level when the receiver receives

more data than what UART_RXFIFO_FULL_THRHD specifies. (R/WTC/SS)

UART_TXFIFO_EMPTY_INT_RAW This interrupt raw bit turns to high level when the amount of data

in TX FIFO is less than what UART_TXFIFO_EMPTY_THRHD specifies. (R/WTC/SS)

UART_PARITY_ERR_INT_RAW This interrupt raw bit turns to high level when the receiver detects a

parity error in the data. (R/WTC/SS)

UART_FRM_ERR_INT_RAW This interrupt raw bit turns to high level when the receiver detects a

framing error. (R/WTC/SS)

UART_RXFIFO_OVF_INT_RAW This interrupt raw bit turns to high level when the receiver receives

more data than the capacity of RX FIFO. (R/WTC/SS)

UART_DSR_CHG_INT_RAW This interrupt raw bit turns to high level when the receiver detects the

edge change of DSRn signal. (R/WTC/SS)

UART_CTS_CHG_INT_RAW This interrupt raw bit turns to high level when the receiver detects the

edge change of CTSn signal. (R/WTC/SS)

UART_BRK_DET_INT_RAW This interrupt raw bit turns to high level when the receiver detects a 0

after the stop bit. (R/WTC/SS)

UART_RXFIFO_TOUT_INT_RAW This interrupt raw bit turns to high level when the receiver takes

more time than UART_RX_TOUT_THRHD to receive a byte. (R/WTC/SS)

UART_SW_XON_INT_RAW This interrupt raw bit turns to high level when the receiver receives an

XON character and UART_SW_FLOW_CON_EN is set to 1. (R/WTC/SS)

UART_SW_XOFF_INT_RAW This interrupt raw bit turns to high level when the receiver receives an

XOFF character and UART_SW_FLOW_CON_EN is set to 1. (R/WTC/SS)

UART_GLITCH_DET_INT_RAW This interrupt raw bit turns to high level when the receiver detects a

glitch in the middle of a start bit. (R/WTC/SS)

Continued on the next page...

Espressif Systems 322
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.3. UART_INT_RAW_REG (0x0004)

Continued from the previous page...

UART_TX_BRK_DONE_INT_RAW This interrupt raw bit turns to high level when the transmitter com-

pletes sending NULL characters, after all data in TX FIFO are sent. (R/WTC/SS)

UART_TX_BRK_IDLE_DONE_INT_RAW This interrupt raw bit turns to high level when the transmitter

has kept the shortest duration after sending the last data. (R/WTC/SS)

UART_TX_DONE_INT_RAW This interrupt raw bit turns to high level when the transmitter has sent

out all data in FIFO. (R/WTC/SS)

UART_RS485_PARITY_ERR_INT_RAW This interrupt raw bit turns to high level when the receiver

detects a parity error from the echo of the transmitter in RS485 mode. (R/WTC/SS)

UART_RS485_FRM_ERR_INT_RAW This interrupt raw bit turns to high level when the receiver de-

tects a framing error from the echo of the transmitter in RS485 mode. (R/WTC/SS)

UART_RS485_CLASH_INT_RAW This interrupt raw bit turns to high level when a collision is detected

between the transmitter and the receiver in RS485 mode. (R/WTC/SS)

UART_AT_CMD_CHAR_DET_INT_RAW This interrupt raw bit turns to high level when the receiver

detects the configured UART_AT_CMD_CHAR. (R/WTC/SS)

UART_WAKEUP_INT_RAW This interrupt raw bit turns to high level when the input RXD edge

changes more times than what UART_ACTIVE_THRESHOLD specifies in Light-sleep mode.

(R/WTC/SS)

Espressif Systems 323
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.4. UART_INT_ST_REG (0x0008)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UA
RT
_W
AK
EU
P_
IN
T_
ST

0

19

UA
RT
_A
T_
CM

D_
CH
AR
_D
ET
_IN
T_
ST

0

18

UA
RT
_R
S4
85
_C
LA
SH
_IN
T_
ST

0

17

UA
RT
_R
S4
85
_F
RM
_E
RR
_IN
T_
ST

0

16

UA
RT
_R
S4
85
_P
AR
ITY
_E
RR
_IN
T_
ST

0

15

UA
RT
_T
X_
DO
NE
_IN
T_
ST

0

14

UA
RT
_T
X_
BR
K_
ID
LE
_D
ON
E_
IN
T_
ST

0

13

UA
RT
_T
X_
BR
K_
DO
NE
_IN
T_
ST

0

12

UA
RT
_G
LIT
CH
_D
ET
_IN
T_
ST

0

11

UA
RT
_S
W
_X
OF
F_
IN
T_
ST

0

10

UA
RT
_S
W
_X
ON
_IN
T_
ST

0

9

UA
RT
_R
XF
IFO
_T
OU
T_
IN
T_
ST

0

8

UA
RT
_B
RK
_D
ET
_IN
T_
ST

0

7

UA
RT
_C
TS
_C
HG
_IN
T_
ST

0

6

UA
RT
_D
SR
_C
HG
_IN
T_
ST

0

5

UA
RT
_R
XF
IFO
_O
VF
_IN
T_
ST

0

4

UA
RT
_F
RM
_E
RR
_IN
T_
ST

0

3

UA
RT
_P
AR
ITY
_E
RR
_IN
T_
ST

0

2

UA
RT
_T
XF
IFO
_E
M
PT
Y_
IN
T_
ST

0

1

UA
RT
_R
XF
IFO
_F
UL
L_
IN
T_
ST

0

0

Reset

UART_RXFIFO_FULL_INT_ST This is the status bit for the UART_RXFIFO_FULL_INT interrupt when

UART_RXFIFO_FULL_INT_ENA is set to 1. (RO)

UART_TXFIFO_EMPTY_INT_ST This is the status bit for the UART_TXFIFO_EMPTY_INT when

UART_TXFIFO_EMPTY_INT_ENA is set to 1. (RO)

UART_PARITY_ERR_INT_ST This is the status bit for the UART_PARITY_ERR_INT interrupt when

UART_PARITY_ERR_INT_ENA is set to 1. (RO)

UART_FRM_ERR_INT_ST This is the status bit for the UART_FRM_ERR_INT interrupt when

UART_FRM_ERR_INT_ENA is set to 1. (RO)

UART_RXFIFO_OVF_INT_ST This is the status bit for the UART_RXFIFO_OVF_INT interrupt when

UART_RXFIFO_OVF_INT_ENA is set to 1. (RO)

UART_DSR_CHG_INT_ST This is the status bit for the UART_DSR_CHG_INT interrupt when

UART_DSR_CHG_INT_ENA is set to 1. (RO)

UART_CTS_CHG_INT_ST This is the status bit for the UART_CTS_CHG_INT interrupt when

UART_CTS_CHG_INT_ENA is set to 1. (RO)

UART_BRK_DET_INT_ST This is the status bit for the UART_BRK_DET_INT interrupt when

UART_BRK_DET_INT_ENA is set to 1. (RO)

UART_RXFIFO_TOUT_INT_ST This is the status bit for the UART_RXFIFO_TOUT_INT interrupt when

UART_RXFIFO_TOUT_INT_ENA is set to 1. (RO)

UART_SW_XON_INT_ST This is the status bit for the UART_SW_XON_INT interrupt when

UART_SW_XON_INT_ENA is set to 1. (RO)

UART_SW_XOFF_INT_ST This is the status bit for the UART_SW_XOFF_INT interrupt when

UART_SW_XOFF_INT_ENA is set to 1. (RO)

UART_GLITCH_DET_INT_ST This is the status bit for the UART_GLITCH_DET_INT interrupt when

UART_GLITCH_DET_INT_ENA is set to 1. (RO)

UART_TX_BRK_DONE_INT_ST This is the status bit for the UART_TX_BRK_DONE_INT interrupt

when UART_TX_BRK_DONE_INT_ENA is set to 1. (RO)

Continued on the next page...

Espressif Systems 324
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.4. UART_INT_ST_REG (0x0008)

Continued from the previous page...

UART_TX_BRK_IDLE_DONE_INT_ST This is the status bit for the UART_TX_BRK_IDLE_DONE_INT

interrupt when UART_TX_BRK_IDLE_DONE_INT_ENA is set to 1. (RO)

UART_TX_DONE_INT_ST This is the status bit for the UART_TX_DONE_INT interrupt when

UART_TX_DONE_INT_ENA is set to 1. (RO)

UART_RS485_PARITY_ERR_INT_ST This is the status bit for the UART_RS485_PARITY_ERR_INT

interrupt when UART_RS485_PARITY_INT_ENA is set to 1. (RO)

UART_RS485_FRM_ERR_INT_ST This is the status bit for the UART_RS485_FRM_ERR_INT inter-

rupt when UART_RS485_FRM_ERR_INT_ENA is set to 1. (RO)

UART_RS485_CLASH_INT_ST This is the status bit for the UART_RS485_CLASH_INT interrupt

when UART_RS485_CLASH_INT_ENA is set to 1. (RO)

UART_AT_CMD_CHAR_DET_INT_ST This is the status bit for the UART_AT_CMD_CHAR_DET_INT

interrupt when UART_AT_CMD_CHAR_DET_INT_ENA is set to 1. (RO)

UART_WAKEUP_INT_ST This is the status bit for the UART_WAKEUP_INT interrupt when

UART_WAKEUP_INT_ENA is set to 1. (RO)

Espressif Systems 325
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.5. UART_INT_ENA_REG (0x000C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UA
RT
_W
AK
EU
P_
IN
T_
EN
A

0

19

UA
RT
_A
T_
CM

D_
CH
AR
_D
ET
_IN
T_
EN
A

0

18

UA
RT
_R
S4
85
_C
LA
SH
_IN
T_
EN
A

0

17

UA
RT
_R
S4
85
_F
RM
_E
RR
_IN
T_
EN
A

0

16

UA
RT
_R
S4
85
_P
AR
ITY
_E
RR
_IN
T_
EN
A

0

15

UA
RT
_T
X_
DO
NE
_IN
T_
EN
A

0

14

UA
RT
_T
X_
BR
K_
ID
LE
_D
ON
E_
IN
T_
EN
A

0

13

UA
RT
_T
X_
BR
K_
DO
NE
_IN
T_
EN
A

0

12

UA
RT
_G
LIT
CH
_D
ET
_IN
T_
EN
A

0

11

UA
RT
_S
W
_X
OF
F_
IN
T_
EN
A

0

10

UA
RT
_S
W
_X
ON
_IN
T_
EN
A

0

9

UA
RT
_R
XF
IFO
_T
OU
T_
IN
T_
EN
A

0

8

UA
RT
_B
RK
_D
ET
_IN
T_
EN
A

0

7

UA
RT
_C
TS
_C
HG
_IN
T_
EN
A

0

6

UA
RT
_D
SR
_C
HG
_IN
T_
EN
A

0

5

UA
RT
_R
XF
IFO
_O
VF
_IN
T_
EN
A

0

4

UA
RT
_F
RM
_E
RR
_IN
T_
EN
A

0

3

UA
RT
_P
AR
ITY
_E
RR
_IN
T_
EN
A

0

2

UA
RT
_T
XF
IFO
_E
M
PT
Y_
IN
T_
EN
A

0

1

UA
RT
_R
XF
IFO
_F
UL
L_
IN
T_
EN
A

0

0

Reset

UART_RXFIFO_FULL_INT_ENA This is the enable bit for the UART_RXFIFO_FULL_INT interrupt.

(R/W)

UART_TXFIFO_EMPTY_INT_ENA This is the enable bit for the UART_TXFIFO_EMPTY_INT interrupt.

(R/W)

UART_PARITY_ERR_INT_ENA This is the enable bit for the UART_PARITY_ERR_INT interrupt. (R/W)

UART_FRM_ERR_INT_ENA This is the enable bit for the UART_FRM_ERR_INT interrupt. (R/W)

UART_RXFIFO_OVF_INT_ENA This is the enable bit for the UART_RXFIFO_OVF_INT interrupt. (R/W)

UART_DSR_CHG_INT_ENA This is the enable bit for the UART_DSR_CHG_INT interrupt. (R/W)

UART_CTS_CHG_INT_ENA This is the enable bit for the UART_CTS_CHG_INT interrupt. (R/W)

UART_BRK_DET_INT_ENA This is the enable bit for the UART_BRK_DET_INT interrupt. (R/W)

UART_RXFIFO_TOUT_INT_ENA This is the enable bit for the UART_RXFIFO_TOUT_INT interrupt.

(R/W)

UART_SW_XON_INT_ENA This is the enable bit for the UART_SW_XON_INT interrupt. (R/W)

UART_SW_XOFF_INT_ENA This is the enable bit for the UART_SW_XOFF_INT interrupt. (R/W)

UART_GLITCH_DET_INT_ENA This is the enable bit for the UART_GLITCH_DET_INT interrupt.

(R/W)

UART_TX_BRK_DONE_INT_ENA This is the enable bit for the UART_TX_BRK_DONE_INT interrupt.

(R/W)

UART_TX_BRK_IDLE_DONE_INT_ENA This is the enable bit for the

UART_TX_BRK_IDLE_DONE_INT interrupt. (R/W)

UART_TX_DONE_INT_ENA This is the enable bit for the UART_TX_DONE_INT interrupt. (R/W)

Continued on the next page...

Espressif Systems 326
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.5. UART_INT_ENA_REG (0x000C)

Continued from the previous page...

UART_RS485_PARITY_ERR_INT_ENA This is the enable bit for the

UART_RS485_PARITY_ERR_INT interrupt. (R/W)

UART_RS485_FRM_ERR_INT_ENA This is the enable bit for the UART_RS485_PARITY_ERR_INT

interrupt. (R/W)

UART_RS485_CLASH_INT_ENA This is the enable bit for the UART_RS485_CLASH_INT interrupt.

(R/W)

UART_AT_CMD_CHAR_DET_INT_ENA This is the enable bit for the

UART_AT_CMD_CHAR_DET_INT interrupt. (R/W)

UART_WAKEUP_INT_ENA This is the enable bit for the UART_WAKEUP_INT interrupt. (R/W)

Espressif Systems 327
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.6. UART_INT_CLR_REG (0x0010)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UA
RT
_W
AK
EU
P_
IN
T_
CL
R

0

19

UA
RT
_A
T_
CM

D_
CH
AR
_D
ET
_IN
T_
CL
R

0

18

UA
RT
_R
S4
85
_C
LA
SH
_IN
T_
CL
R

0

17

UA
RT
_R
S4
85
_F
RM
_E
RR
_IN
T_
CL
R

0

16

UA
RT
_R
S4
85
_P
AR
ITY
_E
RR
_IN
T_
CL
R

0

15

UA
RT
_T
X_
DO
NE
_IN
T_
CL
R

0

14

UA
RT
_T
X_
BR
K_
ID
LE
_D
ON
E_
IN
T_
CL
R

0

13

UA
RT
_T
X_
BR
K_
DO
NE
_IN
T_
CL
R

0

12

UA
RT
_G
LIT
CH
_D
ET
_IN
T_
CL
R

0

11

UA
RT
_S
W
_X
OF
F_
IN
T_
CL
R

0

10

UA
RT
_S
W
_X
ON
_IN
T_
CL
R

0

9

UA
RT
_R
XF
IFO
_T
OU
T_
IN
T_
CL
R

0

8

UA
RT
_B
RK
_D
ET
_IN
T_
CL
R

0

7

UA
RT
_C
TS
_C
HG
_IN
T_
CL
R

0

6

UA
RT
_D
SR
_C
HG
_IN
T_
CL
R

0

5

UA
RT
_R
XF
IFO
_O
VF
_IN
T_
CL
R

0

4

UA
RT
_F
RM
_E
RR
_IN
T_
CL
R

0

3

UA
RT
_P
AR
ITY
_E
RR
_IN
T_
CL
R

0

2

UA
RT
_T
XF
IFO
_E
M
PT
Y_
IN
T_
CL
R

0

1

UA
RT
_R
XF
IFO
_F
UL
L_
IN
T_
CL
R

0

0

Reset

UART_RXFIFO_FULL_INT_CLR Set this bit to clear the UART_THE RXFIFO_FULL_INT interrupt.

(WT)

UART_TXFIFO_EMPTY_INT_CLR Set this bit to clear the UART_TXFIFO_EMPTY_INT interrupt.

(WT)

UART_PARITY_ERR_INT_CLR Set this bit to clear the UART_PARITY_ERR_INT interrupt. (WT)

UART_FRM_ERR_INT_CLR Set this bit to clear the UART_FRM_ERR_INT interrupt. (WT)

UART_RXFIFO_OVF_INT_CLR Set this bit to clear the UART_UART_RXFIFO_OVF_INT interrupt.

(WT)

UART_DSR_CHG_INT_CLR Set this bit to clear the UART_DSR_CHG_INT interrupt. (WT)

UART_CTS_CHG_INT_CLR Set this bit to clear the UART_CTS_CHG_INT interrupt. (WT)

UART_BRK_DET_INT_CLR Set this bit to clear the UART_BRK_DET_INT interrupt. (WT)

UART_RXFIFO_TOUT_INT_CLR Set this bit to clear the UART_RXFIFO_TOUT_INT interrupt. (WT)

UART_SW_XON_INT_CLR Set this bit to clear the UART_SW_XON_INT interrupt. (WT)

UART_SW_XOFF_INT_CLR Set this bit to clear the UART_SW_XOFF_INT interrupt. (WT)

UART_GLITCH_DET_INT_CLR Set this bit to clear the UART_GLITCH_DET_INT interrupt. (WT)

UART_TX_BRK_DONE_INT_CLR Set this bit to clear the UART_TX_BRK_DONE_INT interrupt. (WT)

UART_TX_BRK_IDLE_DONE_INT_CLR Set this bit to clear the UART_TX_BRK_IDLE_DONE_INT

interrupt. (WT)

UART_TX_DONE_INT_CLR Set this bit to clear the UART_TX_DONE_INT interrupt. (WT)

UART_RS485_PARITY_ERR_INT_CLR Set this bit to clear the UART_RS485_PARITY_ERR_INT in-

terrupt. (WT)

Continued on the next page...

Espressif Systems 328
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.6. UART_INT_CLR_REG (0x0010)

Continued from the previous page...

UART_RS485_FRM_ERR_INT_CLR Set this bit to clear the UART_RS485_FRM_ERR_INT interrupt.

(WT)

UART_RS485_CLASH_INT_CLR Set this bit to clear the UART_RS485_CLASH_INT interrupt. (WT)

UART_AT_CMD_CHAR_DET_INT_CLR Set this bit to clear the UART_AT_CMD_CHAR_DET_INT in-

terrupt. (WT)

UART_WAKEUP_INT_CLR Set this bit to clear the UART_WAKEUP_INT interrupt. (WT)

Register 19.7. UART_CLKDIV_REG (0x0014)

(re
se
rve
d)

0 0 0 0 0 0 0 0

31 24

UA
RT
_C
LK
DI
V_
FR
AG

0x0

23 20

(re
se
rve
d)

0 0 0 0 0 0 0 0

19 12

UA
RT
_C
LK
DI
V

0x2b6

11 0

Reset

UART_CLKDIV The integral part of the frequency divisor. (R/W)

UART_CLKDIV_FRAG The fractional part of the frequency divisor. (R/W)

Register 19.8. UART_RX_FILT_REG (0x0018)

(re
se
rve
d)

0 0

31 9

UA
RT
_G
LIT
CH
_F
ILT
_E
N

0

8

UA
RT
_G
LIT
CH
_F
ILT

0x8

7 0

Reset

UART_GLITCH_FILT When input pulse width is lower than this value, the pulse is ignored. (R/W)

UART_GLITCH_FILT_EN Set this bit to enable RX signal filter. (R/W)

Espressif Systems 329
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.9. UART_CONF0_REG (0x0020)

(re
se
rve
d)

0 0 0

31 29

UA
RT
_M
EM
_C
LK
_E
N

1

28

UA
RT
_A
UT
OB
AU
D_
EN

0

27

UA
RT
_E
RR
_W
R_
M
AS
K

0

26

UA
RT
_C
LK
_E
N

0

25

UA
RT
_D
TR
_IN
V

0

24

UA
RT
_R
TS
_IN
V

0

23

UA
RT
_T
XD
_IN
V

0

22

UA
RT
_D
SR
_IN
V

0

21

UA
RT
_C
TS
_IN
V

0

20

UA
RT
_R
XD
_IN
V

0

19

UA
RT
_T
XF
IFO
_R
ST

0

18

UA
RT
_R
XF
IFO
_R
ST

0

17

UA
RT
_IR
DA
_E
N

0

16

UA
RT
_T
X_
FL
OW

_E
N

0

15

UA
RT
_L
OO
PB
AC
K

0

14

UA
RT
_IR
DA
_R
X_
IN
V

0

13

UA
RT
_IR
DA
_T
X_
IN
V

0

12

UA
RT
_IR
DA
_W
CT
L

0

11

UA
RT
_IR
DA
_T
X_
EN

0

10

UA
RT
_IR
DA
_D
PL
X

0

9

UA
RT
_T
XD
_B
RK

0

8

UA
RT
_S
W
_D
TR

0

7

UA
RT
_S
W
_R
TS

0

6

UA
RT
_S
TO
P_
BI
T_
NU
M

1

5 4

UA
RT
_B
IT_
NU
M

3

3 2

UA
RT
_P
AR
ITY
_E
N

0

1

UA
RT
_P
AR
ITY

0

0

Reset

UART_PARITY This bit is used to configure the parity check mode. (R/W)

UART_PARITY_EN Set this bit to enable UART parity check. (R/W)

UART_BIT_NUM This field is used to set the length of data. (R/W)

UART_STOP_BIT_NUM This field is used to set the length of stop bit. (R/W)

UART_SW_RTS This bit is used to configure the software RTS signal which is used in software flow

control. (R/W)

UART_SW_DTR This bit is used to configure the software DTR signal which is used in software flow

control. (R/W)

UART_TXD_BRK Set this bit to enbale the transmitter to send NULL characters when the process of

sending data is done. (R/W)

UART_IRDA_DPLX Set this bit to enable IrDA loopback mode. (R/W)

UART_IRDA_TX_EN This is the start enable bit for IrDA transmitter. (R/W)

UART_IRDA_WCTL 1: The IrDA transmitter’s 11th bit is the same as 10th bit; 0: Set IrDA transmitter’s

11th bit to 0. (R/W)

UART_IRDA_TX_INV Set this bit to invert the level of IrDA transmitter. (R/W)

UART_IRDA_RX_INV Set this bit to invert the level of IrDA receiver. (R/W)

UART_LOOPBACK Set this bit to enable UART loopback test mode. (R/W)

UART_TX_FLOW_EN Set this bit to enable flow control function for the transmitter. (R/W)

UART_IRDA_EN Set this bit to enable IrDA protocol. (R/W)

UART_RXFIFO_RST Set this bit to reset the UART RX FIFO. (R/W)

UART_TXFIFO_RST Set this bit to reset the UART TX FIFO. (R/W)

UART_RXD_INV Set this bit to invert the level value of UART RXD signal. (R/W)

UART_CTS_INV Set this bit to invert the level value of UART CTS signal. (R/W)

UART_DSR_INV Set this bit to invert the level value of UART DSR signal. (R/W)

Continued on the next page...

Espressif Systems 330
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.9. UART_CONF0_REG (0x0020)

Continued from the previous page...

UART_TXD_INV Set this bit to invert the level value of UART TXD signal. (R/W)

UART_RTS_INV Set this bit to invert the level value of UART RTS signal. (R/W)

UART_DTR_INV Set this bit to invert the level value of UART DTR signal. (R/W)

UART_CLK_EN 1: Force clock on for register; 0: Support clock only when application writes registers.

(R/W)

UART_ERR_WR_MASK 1: The receiver stops storing data into FIFO when data is wrong; 0: The

receiver stores the data even if the received data is wrong. (R/W)

UART_AUTOBAUD_EN This is the enable bit for baud rate detection. (R/W)

UART_MEM_CLK_EN The signal to enable UART RAM clock gating. (R/W)

Register 19.10. UART_CONF1_REG (0x0024)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

UA
RT
_R
X_
TO
UT
_E
N

0

21

UA
RT
_R
X_
FL
OW

_E
N

0

20

UA
RT
_R
X_
TO
UT
_F
LO
W
_D
IS

0

19

UA
RT
_D
IS
_R
X_
DA
T_
OV
F

0

18

UA
RT
_T
XF
IFO
_E
M
PT
Y_
TH
RH
D

0x60

17 9

UA
RT
_R
XF
IFO
_F
UL
L_
TH
RH
D

0x60

8 0

Reset

UART_RXFIFO_FULL_THRHD An UART_RXFIFO_FULL_INT interrupt is generated when the re-

ceiver receives more data than the value of this field. (R/W)

UART_TXFIFO_EMPTY_THRHD An UART_TXFIFO_EMPTY_INT interrupt is generated when the

number of data bytes in TX FIFO is less than the value of this field. (R/W)

UART_DIS_RX_DAT_OVF Disable UART RX data overflow detection. (R/W)

UART_RX_TOUT_FLOW_DIS Set this bit to stop accumulating idle_cnt when hardware flow control

works. (R/W)

UART_RX_FLOW_EN This is the flow enable bit for UART receiver. (R/W)

UART_RX_TOUT_EN This is the enable bit for UART receiver’s timeout function. (R/W)

Espressif Systems 331
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.11. UART_FLOW_CONF_REG (0x0034)

(re
se
rve
d)

0 0

31 6

UA
RT
_S
EN
D_
XO
FF

0

5

UA
RT
_S
EN
D_
XO
N

0

4

UA
RT
_F
OR
CE
_X
OF
F

0

3

UA
RT
_F
OR
CE
_X
ON

0

2

UA
RT
_X
ON
OF
F_
DE
L

0

1

UA
RT
_S
W
_F
LO
W
_C
ON
_E
N

0

0

Reset

UART_SW_FLOW_CON_EN Set this bit to enable software flow control. When UART receives

flow control characters XON or XOFF, which can be configured by UART_XON_CHAR or

UART_XOFF_CHAR respectively, UART_SW_XON_INT or UART_SW_XOFF_INT interrupts can be

triggered if enabled. (R/W)

UART_XONOFF_DEL Set this bit to remove flow control characters from the received data. (R/W)

UART_FORCE_XON Set this bit to force the transmitter to send data. (R/W)

UART_FORCE_XOFF Set this bit to stop the transmitter from sending data. (R/W)

UART_SEND_XON Set this bit to send an XON character. This bit is cleared by hardware automati-

cally. (R/W/SS/SC)

UART_SEND_XOFF Set this bit to send an XOFF character. This bit is cleared by hardware automat-

ically. (R/W/SS/SC)

Register 19.12. UART_SLEEP_CONF_REG (0x0038)

(re
se
rve
d)

0 0

31 10

UA
RT
_A
CT
IVE
_T
HR
ES
HO
LD

0xf0

9 0

Reset

UART_ACTIVE_THRESHOLD UART is activated from Light-sleep mode when the input RXD edge

changes more times than the value of this field. (R/W)

Espressif Systems 332
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.13. UART_SWFC_CONF0_REG (0x003C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UA
RT
_X
OF
F_
CH
AR

0x13

16 9

UA
RT
_X
OF
F_
TH
RE
SH
OL
D

0xe0

8 0

Reset

UART_XOFF_THRESHOLD When the number of data bytes in RX FIFO is more than the value of this

field with UART_SW_FLOW_CON_EN set to 1, the transmitter sends an XOFF character. (R/W)

UART_XOFF_CHAR This field stores the XOFF flow control character. (R/W)

Register 19.14. UART_SWFC_CONF1_REG (0x0040)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

UA
RT
_X
ON
_C
HA
R

0x11

16 9

UA
RT
_X
ON
_T
HR
ES
HO
LD

0x0

8 0

Reset

UART_XON_THRESHOLD When the number of data bytes in RX FIFO is less than the value of this

field with UART_SW_FLOW_CON_EN set to 1, the transmitter sends an XON character. (R/W)

UART_XON_CHAR This field stores the XON flow control character. (R/W)

Register 19.15. UART_TXBRK_CONF_REG (0x0044)

(re
se
rve
d)

0 0

31 8

UA
RT
_T
X_
BR
K_
NU
M

0xa

7 0

Reset

UART_TX_BRK_NUM This field is used to configure the number of 0 to be sent after the process of

sending data is done. It is active when UART_TXD_BRK is set to 1. (R/W)

Espressif Systems 333
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.16. UART_IDLE_CONF_REG (0x0048)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0

31 20

UA
RT
_T
X_
ID
LE
_N
UM

0x100

19 10

UA
RT
_R
X_
ID
LE
_T
HR
HD

0x100

9 0

Reset

UART_RX_IDLE_THRHD A frame end signal is generated when the receiver takes more time to re-

ceive one byte data than the value of this field, in the unit of bit time (the time it takes to transfer

one bit). (R/W)

UART_TX_IDLE_NUM This field is used to configure the duration time between transfers, in the unit

of bit time (the time it takes to transfer one bit). (R/W)

Register 19.17. UART_RS485_CONF_REG (0x004C)

(re
se
rve
d)

0 0

31 10

UA
RT
_R
S4
85
_T
X_
DL
Y_
NU
M

0

9 6

UA
RT
_R
S4
85
_R
X_
DL
Y_
NU
M

0

5

UA
RT
_R
S4
85
RX
BY
_T
X_
EN

0

4

UA
RT
_R
S4
85
TX
_R
X_
EN

0

3

UA
RT
_D
L1
_E
N

0

2

UA
RT
_D
L0
_E
N

0

1

UA
RT
_R
S4
85
_E
N

0

0

Reset

UART_RS485_EN Set this bit to choose RS485 mode. (R/W)

UART_DL0_EN Set this bit to delay the stop bit by 1 bit. (R/W)

UART_DL1_EN Set this bit to delay the stop bit by 1 bit. (R/W)

UART_RS485TX_RX_EN Set this bit to enable the receiver could receive data when the transmitter

is transmitting data in RS485 mode. (R/W)

UART_RS485RXBY_TX_EN Set this bit to enable RS485 transmitter to send data when RS485 re-

ceiver line is busy. (R/W)

UART_RS485_RX_DLY_NUM This bit is used to delay the receiver’s internal data signal. (R/W)

UART_RS485_TX_DLY_NUM This field is used to delay the transmitter’s internal data signal. (R/W)

Espressif Systems 334
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.18. UART_CLK_CONF_REG (0x0078)

(re
se
rve
d)

0 0 0 0 0 0

31 26

UA
RT
_R
X_
SC
LK
_E
N

1

25

UA
RT
_T
X_
SC
LK
_E
N

1

24

UA
RT
_R
ST
_C
OR
E

0

23

UA
RT
_S
CL
K_
EN

1

22

UA
RT
_S
CL
K_
SE
L

3

21 20

UA
RT
_S
CL
K_
DI
V_
NU
M

0x1

19 12

UA
RT
_S
CL
K_
DI
V_
A

0x0

11 6

UA
RT
_S
CL
K_
DI
V_
B

0x0

5 0

Reset

UART_SCLK_DIV_B The denominator of the frequency divisor. (R/W)

UART_SCLK_DIV_A The numerator of the frequency divisor. (R/W)

UART_SCLK_DIV_NUM The integral part of the frequency divisor. (R/W)

UART_SCLK_SEL Selects UART clock source. 1: APB_CLK; 2: FOSC_CLK; 3: XTAL_CLK. (R/W)

UART_SCLK_EN Set this bit to enable UART TX/RX clock. (R/W)

UART_RST_CORE Write 1 and then write 0 to this bit, to reset UART TX/RX. (R/W)

UART_TX_SCLK_EN Set this bit to enable UART TX clock. (R/W)

UART_RX_SCLK_EN Set this bit to enable UART RX clock. (R/W)

Register 19.19. UART_STATUS_REG (0x001C)

UA
RT
_T
XD

1

31

UA
RT
_R
TS
N

1

30

UA
RT
_D
TR
N

1

29

(re
se
rve
d)

0 0 0

28 26

UA
RT
_T
XF
IFO
_C
NT

0

25 16

UA
RT
_R
XD

1

15

UA
RT
_C
TS
N

1

14

UA
RT
_D
SR
N

0

13

(re
se
rve
d)

0 0 0

12 10

UA
RT
_R
XF
IFO
_C
NT

0

9 0

Reset

UART_RXFIFO_CNT Stores the number of valid data bytes in RX FIFO. (RO)

UART_DSRN This bit represents the level of the internal UART DSR signal. (RO)

UART_CTSN This bit represents the level of the internal UART CTS signal. (RO)

UART_RXD This bit represents the level of the internal UART RXD signal. (RO)

UART_TXFIFO_CNT Stores the number of data bytes in TX FIFO. (RO)

UART_DTRN This bit represents the level of the internal UART DTR signal. (RO)

UART_RTSN This bit represents the level of the internal UART RTS signal. (RO)

UART_TXD This bit represents the level of the internal UART TXD signal. (RO)

Espressif Systems 335
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.20. UART_MEM_TX_STATUS_REG (0x0064)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

UA
RT
_T
X_
RA
DD
R

0x0

20 11

(re
se
rve
d)

0

10

UA
RT
_A
PB
_T
X_
W
AD
DR

0x0

9 0

Reset

UART_APB_TX_WADDR This field stores the offset address in TX FIFO when software writes TX FIFO

via APB. (RO)

UART_TX_RADDR This field stores the offset address in TX FIFO when TX FSM reads data via

Tx_FIFO_Ctrl. (RO)

Register 19.21. UART_MEM_RX_STATUS_REG (0x0068)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

UA
RT
_R
X_
W
AD
DR

0x100

20 11

(re
se
rve
d)

0

10

UA
RT
_A
PB
_R
X_
RA
DD
R

0x100

9 0

Reset

UART_APB_RX_RADDR This field stores the offset address in RX FIFO when software reads data

from RX FIFO via APB. UART0 is 0x100. UART1 is 0x180. (RO)

UART_RX_WADDR This field stores the offset address in RX FIFO when Rx_FIFO_Ctrl writes RX FIFO.

UART0 is 0x100. UART1 is 0x180. (RO)

Register 19.22. UART_FSM_STATUS_REG (0x006C)

(re
se
rve
d)

0 0

31 8

UA
RT
_S
T_
UT
X_
OU
T

0

7 4

UA
RT
_S
T_
UR
X_
OU
T

0

3 0

Reset

UART_ST_URX_OUT This is the status field of the receiver. (RO)

UART_ST_UTX_OUT This is the status field of the transmitter. (RO)

Espressif Systems 336
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.23. UART_LOWPULSE_REG (0x0028)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

UA
RT
_L
OW

PU
LS
E_
M
IN
_C
NT

0xfff

11 0

Reset

UART_LOWPULSE_MIN_CNT This field stores the value of the minimum duration time of the low

level pulse, in the unit of APB_CLK cycles. It is used in baud rate detection. (RO)

Register 19.24. UART_HIGHPULSE_REG (0x002C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

UA
RT
_H
IG
HP
UL
SE
_M
IN
_C
NT

0xfff

11 0

Reset

UART_HIGHPULSE_MIN_CNT This field stores the value of the maximum duration time for the high

level pulse, in the unit of APB_CLK cycles. It is used in baud rate detection. (RO)

Register 19.25. UART_RXD_CNT_REG (0x0030)

(re
se
rve
d)

0 0

31 10

UA
RT
_R
XD
_E
DG
E_
CN
T

0x0

9 0

Reset

UART_RXD_EDGE_CNT This field stores the count of RXD edge change. It is used in baud rate

detection. (RO)

Espressif Systems 337
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.26. UART_POSPULSE_REG (0x0070)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

UA
RT
_P
OS
ED
GE
_M
IN
_C
NT

0xfff

11 0

Reset

UART_POSEDGE_MIN_CNT This field stores the minimal input clock count between two positive

edges. It is used in baud rate detection. (RO)

Register 19.27. UART_NEGPULSE_REG (0x0074)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 12

UA
RT
_N
EG
ED
GE
_M
IN
_C
NT

0xfff

11 0

Reset

UART_NEGEDGE_MIN_CNT This field stores the minimal input clock count between two negative

edges. It is used in baud rate detection. (RO)

Register 19.28. UART_AT_CMD_PRECNT_REG (0x0050)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UA
RT
_P
RE
_ID
LE
_N
UM

0x901

15 0

Reset

UART_PRE_IDLE_NUM This field is used to configure the idle duration time before the first AT_CMD

is received by the receiver, in the unit of bit time (the time it takes to transfer one bit). (R/W)

Espressif Systems 338
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.29. UART_AT_CMD_POSTCNT_REG (0x0054)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UA
RT
_P
OS
T_
ID
LE
_N
UM

0x901

15 0

Reset

UART_POST_IDLE_NUM This field is used to configure the duration time between the last AT_CMD

and the next data byte, in the unit of bit time (the time it takes to transfer one bit). (R/W)

Register 19.30. UART_AT_CMD_GAPTOUT_REG (0x0058)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UA
RT
_R
X_
GA
P_
TO
UT

11

15 0

Reset

UART_RX_GAP_TOUT This field is used to configure the duration time between the AT_CMD char-

acters, in the unit of bit time (the time it takes to transfer one bit). (R/W)

Register 19.31. UART_AT_CMD_CHAR_REG (0x005C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

UA
RT
_C
HA
R_
NU
M

0x3

15 8

UA
RT
_A
T_
CM

D_
CH
AR

0x2b

7 0

Reset

UART_AT_CMD_CHAR This field is used to configure the content of AT_CMD character. (R/W)

UART_CHAR_NUM This field is used to configure the number of continuous AT_CMD characterss

received by the receiver. (R/W)

Espressif Systems 339
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

19 UART Controller (UART) GoBack

Register 19.32. UART_DATE_REG (0x007C)

UA
RT
_D
AT
E

0x2008270

31 0

Reset

UART_DATE This is the version control register. (R/W)

Register 19.33. UART_ID_REG (0x0080)

UA
RT
_R
EG
_U
PD
AT
E

0

31

UA
RT
_U
PD
AT
E_
CT
RL

1

30

UA
RT
_ID

0x000500

29 0

Reset

UART_ID This field is used to configure the UART_ID. (R/W)

UART_UPDATE_CTRL This bit is used to control register synchronization mode. This bit must be

cleared before writing 1 to UART_REG_UPDATE to synchronize configured values to UART Core’s

clock domain. (R/W)

UART_REG_UPDATE When this bit is set to 1 by software, registers are synchronized to UART Core’s

clock domain. This bit is cleared by hardware after synchronization is done. (R/W/SC)

Espressif Systems 340
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

20 SPI Controller (SPI)

20.1 Overview

The Serial Peripheral Interface (SPI) is a synchronous serial interface useful for communication with external

peripherals. The ESP8684 chip integrates three SPI controllers:

• SPI0,

• SPI1,

• and General Purpose SPI2 (GP-SPI2).

SPI0 and SPI1 controllers (MSPI) are primarily reserved for internal use to communicate with external flash and

PSRAM memory. This chapter mainly focuses on the GP-SPI2 controller.

20.2 Glossary

To better illustrate the functions of GP-SPI2, the following terms are used in this chapter.

Master Mode GP-SPI2 acts as an SPI master and initiates SPI transactions.

Slave Mode GP-SPI2 acts as an SPI slave and exchanges data with its master

when its CS is asserted.

MISO Master in, slave out, data transmission from a slave to a master.

MOSI Master out, slave in, data transmission from a master to a slave

Transaction One instance of a master asserting a CS line, transferring data to

and from a slave, and de-asserting the CS line. Transactions are

atomic, which means they can never be interrupted by another

transaction.

SPI Transfer The whole process of an SPI master exchanging data with a slave.

One SPI transfer consists of one or more SPI transactions.

Single Transfer An SPI transfer that consists of only one transaction.

CPU­Controlled Transfer A data transfer that happens between CPU buffer SPI_W0_REG ~
SPI_W15_REG and SPI peripheral.

DMA­Controlled Transfer A data transfer that happens between DMA and SPI peripheral,

controlled by the DMA engine.

Configurable Segmented Transfer A data transfer controlled by DMA in SPI master mode. Such trans-

fer consists of multiple transactions (segments), and each transac-

tion can be configured independently.

Slave Segmented Transfer A data transfer controlled by DMA in SPI slave mode. Such transfer

consists of multiple transactions (segments).

Full­duplex The sending line and receiving line between the master and the

slave are independent. Sending data and receiving data happen

at the same time.

Half­duplex Only one side, the master or the slave, sends data, and the other

side receives data. Sending data and receiving data can not happen

simultaneously on one side.

4­line full­duplex 4-line here means: clock line, CS line, and two data lines. The two

data lines can be used to send or receive data simultaneously.

Espressif Systems 341
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

4­line half­duplex 4-line here means: clock line, CS line, and two data lines. The two

data lines can not be used simultaneously.

3­line half­duplex 3-line here means: clock line, CS line, and one data line. The data

line is used to transmit or receive data.

1­bit SPI In one clock cycle, one bit can be transferred.

(2­bit) Dual SPI In one clock cycle, two bits can be transferred.

Dual Output Read A data mode of Dual SPI. In one clock cycle, one bit of a command,

or one bit of an address, or two bits of data can be transferred.

Dual I/O Read Another data mode of Dual SPI. In one clock cycle, one bit of a

command, or two bits of an address, or two bits of data can be

transferred.

(4­bit) Quad SPI In one clock cycle, four bits can be transferred.

Quad Output Read A datamode of Quad SPI. In one clock cycle, one bit of a command,

or one bit of an address, or four bits of data can be transferred.

Quad I/O Read Another data mode of Quad SPI. In one clock cycle, one bit of a

command, or four bits of an address, or four bits of data can be

transferred.

QPI In one clock cycle, four bits of a command, or four bits of an ad-

dress, or four bits of data can be transferred.

20.3 Features

Some of the key features of GP-SPI2 are:

• Master and slave modes

• Half- and full-duplex communications

• CPU- and DMA-controlled transfers

• Various data modes:

– 1-bit SPI mode

– 2-bit Dual SPI mode

– 4-bit Quad SPI mode

– QPI mode

• Configurable module clock frequency:

– Master: up to 40 MHz

– Slave: up to 40 MHz

• Configurable data length:

– CPU-controlled transfer in master mode or in slave mode: 1 ~ 64 B

– DMA-controlled single transfer in master mode: 1 ~ 32 KB

– DMA-controlled configurable segmented transfer in master mode: data length is unlimited

– DMA-controlled single transfer or segmented transfer in slave mode: data length is unlimited

Espressif Systems 342
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

• Configurable bit read/write order

• Independent interrupts for CPU-controlled transfer and DMA-controlled transfer

• Configurable clock polarity and phase

• Four SPI clock modes: mode 0 ~ mode 3

• Six CS lines in master mode: CS0 ~ CS5

• Able to communicate with SPI devices, such as a sensor, a screen controller, as well as a flash or RAM chip

20.4 Architectural Overview

Figure 20­1. SPI Module Overview

Figure 20-1 shows an overview of SPI module. GP-SPI2 exchanges data with SPI devices by the following

ways:

• CPU-controlled transfer: CPU <-> GP-SPI2 <-> SPI devices

• DMA-controlled transfer: GDMA <-> GP-SPI2 <-> SPI devices

The signals for GP-SPI2 are prefixed with “FSPI” (Fast SPI). FSPI bus signals are routed to GPIO pins via either

GPIO matrix or IO MUX. For more information, see Chapter 5 IO MUX and GPIO Matrix (GPIO, IO MUX).

20.5 Functional Description

20.5.1 Data Modes

GP-SPI2 can be configured as either a master or a slave to communicate with other SPI devices in the following

data modes, see Table 20-2.

Table 20­2. Data Modes Supported by GP­SPI2

Supported Mode CMD State Address State Data State

1-bit SPI 1-bit 1-bit 1-bit

Dual SPI
Dual Output Read 1-bit 1-bit 2-bit

Dual I/O Read 1-bit 2-bit 2-bit

Quad SPI
Quad Output Read 1-bit 1-bit 4-bit

Quad I/O Read 1-bit 4-bit 4-bit

QPI 4-bit 4-bit 4-bit

Espressif Systems 343
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

For more information about the data modes used when GP-SPI2 works as a master or a slave, see Section

20.5.8 and Section 20.5.9, respectively.

20.5.2 Introduction to FSPI Bus Signals

Functional description of FSPI bus signals is shown in Table 20-3. Table 20-4 lists the signals used in various SPI

modes.

Table 20­3. Functional Description of FSPI Bus Signals

FSPI Bus Signal Function

FSPID MOSI/SIO0 (serial data input and output, bit0)

FSPIQ MISO/SIO1 (serial data input and output, bit1)

FSPIWP SIO2 (serial data input and output, bit2)

FSPIHD SIO3 (serial data input and output, bit3)

FSPICLK Input and output clock in master/slave mode

FSPICS0 Input and output CS signal in master/slave mode

FSPICS1 ~ 5 Output CS signal in master mode

Espressif Systems 344
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

20
S
P
IC

ontroller
(S
P
I)

GoBack

Table 20­4. Signals Used in Various SPI Modes

Master Mode Slave Mode

1­bit SPI 1­bit SPIFSPI Signal

FD1 3­line HD2 4­line HD
2­bit Dual SPI 4­bit Quad SPI QPI

FD 3­line HD 4­line HD
2­bit Dual SPI 4­bit Quad SPI QPI

FSPICLK Y Y Y Y Y Y Y Y Y Y Y Y

FSPICS0 Y Y Y Y Y Y Y Y Y Y Y Y

FSPICS1 Y Y Y Y Y Y

FSPICS2 Y Y Y Y Y Y

FSPICS3 Y Y Y Y Y Y

FSPICS4 Y Y Y Y Y Y

FSPICS5 Y Y Y Y Y Y

FSPID Y Y (Y)3 Y4 Y5 Y Y Y (Y)6 Y7 Y8 Y

FSPIQ Y (Y)3 Y4 Y5 Y Y (Y)6 Y7 Y8 Y

FSPIWP Y5 Y Y8 Y

FSPIHD Y5 Y Y8 Y

1 FD: full-duplex
2 HD: half-duplex
3 Only one of the two signals is used at a time.
4 The two signals are used in parallel.
5 The four signals are used in parallel.
6 Only one of the two signals is used at a time.
7 The two signals are used in parallel.
8 The four signals are used in parallel.

E
spressifS

ystem
s

345
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

20.5.3 Bit Read/Write Order Control

In master mode:

• The bit order of the command, address and data sent by the GP-SPI2 master is controlled by

SPI_WR_BIT_ORDER.

• The bit order of the data received by the master is controlled by SPI_RD_BIT_ORDER.

In slave mode:

• The bit order of the data sent by the GP-SPI2 slave is controlled by SPI_WR_BIT_ORDER.

• The bit order of the command, address and data received by the slave is controlled by

SPI_RD_BIT_ORDER.

Table 20-5 shows the function of SPI_RD/WR_BIT_ORDER.

Espressif Systems 346
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

20
S
P
IC

ontroller
(S
P
I)

GoBack

Table 20­5. Bit Order Control in GP­SPI2 Master and Slave Modes

Bit Mode FSPI Bus Data SPI_RD/WR_BIT_ORDER = 0 (MSB) SPI_RD/WR_BIT_ORDER = 2 (MSB) SPI_RD/WR_BIT_ORDER = 1 (LSB) SPI_RD/WR_BIT_ORDER = 3 (LSB)

1-bit mode FSPID or FSPIQ B7->B6->B5->B4->B3->B2->B1->B0 B7->B6->B5->B4->B3->B2->B1->B0 B0->B1->B2->B3->B4->B5->B6->B7 B0->B1->B2->B3->B4->B5->B6->B7

2-bit mode
FSPIQ B7->B5->B3->B1 B6->B4->B2->B0 B1->B3->B5->B7 B0->B2->B4->B6

FSPID B6->B4->B2->B0 B7->B5->B3->B1 B0->B2->B4->B6 B1->B3->B5->B7

4-bit mode

FSPIHD B7->B3 B4->B0 B3->B7 B0->B4

FSPIWP B6->B2 B5->B1 B2->B6 B1->B5

FSPIQ B5->B1 B6->B2 B1->B5 B2->B6

FSPID B4->B0 B7->B3 B0->B4 B3->B7

E
spressifS

ystem
s

347
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

20.5.4 Transfer Modes

GP-SPI2 supports the following transfers when working as a master or a slave.

Table 20­6. Supported Transfers in Master and Slave Modes

Mode CPU­

Controlled

Single Transfer

DMA­

Controlled

Single Transfer

DMA­Controlled

Configurable

Segmented Transfer

DMA­Controlled

Slave Segmented

Transfer

Master
Full-Duplex Y Y Y –

Half-Duplex Y Y Y –

Slave
Full-Duplex Y Y – Y

Half-Duplex Y Y – Y

The following sections provide detailed information about the transfer modes listed in the table above.

20.5.5 CPU­Controlled Data Transfer

GP-SPI2 provides 16 x 32-bit data buffers, i.e., SPI_W0_REG ~ SPI_W15_REG, see Figure 20-2. CPU-controlled

transfer indicates the transfer, in which the data to send is from GP-SPI2 data buffer and the received data is

stored to GP-SPI2 data buffer. In such transfer, every single transaction needs to be triggered by the CPU, after

its related registers are configured. For such reason, the CPU-controlled transfer is always single transfers

(consisting of only one transaction). CPU-controlled mode supports full-duplex communication and half-duplex

communication.

Figure 20­2. Data Buffer Used in CPU­Controlled Transfer

20.5.5.1 CPU­Controlled Master Mode

In a CPU-controlled master full-duplex or half-duplex transfer, the RX or TX data is saved to or sent from

SPI_W0_REG ~ SPI_W15_REG. The bits SPI_USR_MOSI_HIGHPART and SPI_USR_MISO_HIGHPART control

which buffers are used, see the list below.

• TX data

– When SPI_USR_MOSI_HIGHPART is cleared, i.e. high part mode is disabled, TX data is read from

SPI_W0_REG ~ SPI_W15_REG and the data address is incremented by 1 on each byte transferred. If

the data byte length is larger than 64, the data in SPI_W0_REG ∼ SPI_W15_REG may be sent

more than once. Take each 256 bytes as a cycle:

Espressif Systems 348
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

* The first 64 bytes (Byte 0 ~ Byte 63) are read from SPI_W0_REG ~ SPI_W15_REG, respectively.

* Byte 64 ~ Byte 255 are read from SPI_W15_REG[31:24] repeatedly.

* Byte 256 ~ Byte 319 (the first 64 bytes in the another 256 bytes) are read from SPI_W0_REG ~
SPI_W15_REG again, respectively, same as the behaviors described above.

For instance: to send 258 bytes (Byte 0 ~ Byte 257), the data is read from the registers as follows:

* The first 64 bytes (Byte 0 ~ Byte 63) are read from SPI_W0_REG ~ SPI_W15_REG, respectively.

* Byte 64 ~ Byte 255 are read from SPI_W15_REG[31:24] repeatedly.

* The other bytes (Byte 256 and Byte 257) are read from SPI_W0_REG[7:0] and

SPI_W0_REG[15:8] again, respectively. The logic is:

· The address to read data for Byte 256 is the result of (256 % 64 = 0), i.e.,SPI_W0_REG[7:0].

· The address to read data for Byte 257 is the result of (257 % 64 = 1), i.e., SPI_W0_REG[15:8].

– When SPI_USR_MOSI_HIGHPART is set, i.e. high part mode is enabled, TX data is read from

SPI_W8_REG ~ SPI_W15_REG and the data address is incremented by 1 on each byte transferred. If

the data byte length is larger than 32, the data in SPI_W8_REG ∼ SPI_W15_REG may be sent

more than once. Take each 256 bytes as a cycle:

* The first 32 bytes (Byte 0 ~ Byte 31) are read from SPI_W8_REG ~ SPI_W15_REG, respectively.

* Byte 32 ~ Byte 255 are read from SPI_W15_REG[31:24] repeatedly.

* Byte 256 ~ Byte 287 (the first 32 bytes in the another 256 bytes) are read from SPI_W8_REG ~
SPI_W15_REG again, respectively, same as the behaviors described above.

For instance: to send 258 bytes (Byte 0 ~ Byte 257), the data is read from the registers as follows:

* The first 32 bytes (Byte 0 ~ Byte 31) are read from SPI_W8_REG ~ SPI_W15_REG, respectively.

* Byte 32 ~ Byte 255 are read from SPI_W15_REG[31:24] repeatedly.

* The other bytes (Byte 256 and Byte 257) are read from SPI_W8_REG[7:0] and

SPI_W8_REG[15:8] again, respectively. The logic is:

· The address to read data for Byte 256 is the result of (256 % 32 = 0), i.e., SPI_W8_REG[7:0].

· The address to read data for Byte 257 is the result of (257 % 32 = 1), i.e., SPI_W8_REG[15:8].

• RX data

– When SPI_USR_MISO_HIGHPART is cleared, i.e. high part mode is disabled, RX data is saved to

SPI_W0_REG ~ SPI_W15_REG, and the data address is incremented by 1 on each byte transferred.

If the data byte length is larger than 64, the data in SPI_W0_REG ∼ SPI_W15_REG may be

overwritten. Take each 256 bytes as a cycle:

* The first 64 bytes (Byte 0 ~ Byte 63) are saved to SPI_W0_REG ~ SPI_W15_REG, respectively.

* Byte 64 ~ Byte 255 are saved to SPI_W15_REG[31:24] repeatedly.

* Byte 255 ~ Byte 319 (the first 64 bytes in the another 256 bytes) are saved to SPI_W0_REG ~
SPI_W15_REG again, respectively, same as the behaviors described above.

For instance: to receive 258 bytes (Byte 0 ~ Byte 257), the data is saved to the registers as follows:

Espressif Systems 349
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

* The first 64 bytes (Byte 0 ~ Byte 63) are saved to SPI_W0_REG ~ SPI_W15_REG, respectively.

* Byte 64 ~ Byte 255 are saved to SPI_W15_REG[31:24] repeatedly.

* The other bytes (Byte 256 and Byte 257) are saved to SPI_W0_REG[7:0] and SPI_W0_REG[15:8]

again, respectively. The logic is:

· The address to save Byte 256 is the result of (256 % 64 = 0), i.e., SPI_W0_REG[7:0].

· The address to save Byte 257 is the result of (257 % 64 = 1), i.e., SPI_W0_REG[15:8].

– When SPI_USR_MISO_HIGHPART is set, i.e. high part mode is enabled, the RX data is saved to

SPI_W8_REG ~ SPI_W15_REG, and the data address is incremented by 1 on each byte transferred.

If the data byte length is larger than 32, the content of SPI_W8_REG ∼ SPI_W15_REG may be

overwritten. Take each 256 bytes as a cycle:

* Byte 0 ~ Byte 31 are saved to SPI_W8_REG ~ SPI_W15_REG, respectively.

* Byte 32 ~ Byte 255 are saved to SPI_W15_REG[31:24] repeatedly.

* Byte 256 ~ Byte 287 (the first 32 bytes in the another 256 bytes) are saved to SPI_W8_REG ~
SPI_W15_REG again, respectively.

For instance: to receive 258 bytes (Byte 0 ~ Byte 257), the data is saved to the registers as follows:

* The first 32 bytes (Byte 0 ~ Byte 31) are saved to SPI_W8_REG ~ SPI_W15_REG, respectively.

* Byte 32 ~ Byte 255 are saved to SPI_W15_REG[31:24] repeatedly.

* The other bytes (Byte 256 and Byte 257) are saved to SPI_W8_REG[7:0] and SPI_W8_REG[15:8]

again, respectively. The logic is:

· The address to save Byte 256 is the result of (256 % 32 = 0), i.e., SPI_W8_REG[7:0].

· The address to save Byte 257 is the result of (257 % 32 = 1), i.e., SPI_W8_REG[15:8].

Note:

• TX/RX data address mentioned above both are byte-addressable.

– If high part mode is disabled, Address 0 stands for SPI_W0_REG[7:0], and Address 1 for SPI_W0_REG[15:8],

and so on.

– If high part mode is enabled, Address 0 stands for SPI_W8_REG[7:0], and Address 1 for SPI_W8_REG[15:8],

and so on.

The largest address points to SPI_W15_REG[31:24].

• To avoid any possible error in TX/RX data, such as TX data being sent more than once or RX data being overwritten,

please make sure the registers are configured correctly.

20.5.5.2 CPU­Controlled Slave Mode

In a CPU-controlled slave full-duplex or half-duplex transfer, the RX data or TX data is saved to or sent from

SPI_W0_REG ~ SPI_W15_REG, which are byte-addressable.

• In full-duplex communication, the address of SPI_W0_REG ~ SPI_W15_REG starts from 0 and is

incremented by 1 on each byte transferred. If the data address is larger than 63, the data in SPI_W0_REG

Espressif Systems 350
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

~ SPI_W15_REG will be overwritten, same as the behaviors described in the master mode when high part

mode is disabled.

• In half-duplex communication, the ADDR value in transmission format is the start address of the RX or TX

data, corresponding to the registers SPI_W0_REG ~ SPI_W15_REG. The RX or TX address is incremented

by 1 on each byte transferred. If the address is larger than 63 (the highest byte address, i.e.

SPI_W15_REG[31:24]), the data in SPI_W8_REG ~ SPI_W15_REG will be overwritten, same as the

behaviors described in the master mode when high part mode is enabled.

According to your applications, the registers SPI_W0_REG ~ SPI_W15_REG can be used as:

• data buffers only

• data buffers and status buffers

• status buffers only

20.5.6 DMA­Controlled Data Transfer

DMA-controlled transfer refers to the transfer, in which the GDMA RX module receives data and the GDMA TX

module sends data. This transfer is supported both in master mode and in slave mode.

A DMA-controlled transfer can be

• a single transfer, consisting of only one transaction. GP-SPI2 supports this transfer both in master and

slave modes.

• a configurable segmented transfer, consisting of several transactions (segments). GP-SPI2 supports this

transfer only in master mode. For more information, see Section 20.5.8.5.

• a slave segmented transfer, consisting of several transactions (segments). GP-SPI2 supports this transfer

only in slave mode. For more information, see Section 20.5.9.3.

A DMA-controlled transfer only needs to be triggered once by CPU. When such a transfer is triggered, data is

transferred by the GDMA engine from or to the DMA-linked memory, without CPU operation.

DMA-controlled mode supports full-duplex communication, half-duplex communication and functions described

in Section 20.5.8 and Section 20.5.9. Meanwhile, the GDMA RX module is independent from the GDMA TX

module, which means that there are four kinds of full-duplex communications:

• Data is received in DMA-controlled mode and sent in DMA-controlled mode.

• Data is received in DMA-controlled mode but sent in CPU-controlled mode.

• Data is received in CPU-controlled mode but sent in DMA-controlled mode.

• Data is received in CPU-controlled mode and sent in CPU-controlled mode.

20.5.6.1 GDMA Configuration

• Select a GDMA channeln, and configure a GDMA TX/RX descriptor, see Chapter 2 GDMA Controller

(GDMA).

• Set the bit GDMA_INLINK_START_CHn or GDMA_OUTLINK_START_CHn to start GDMA RX engine and

TX engine, respectively.

Espressif Systems 351
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

• Before all the GDMA TX buffer is used or the GDMA TX engine is reset, if GDMA_OUTLINK_RESTART_CHn

is set, a new TX buffer will be added to the end of the last TX buffer in use.

• GDMA RX buffer is linked in the same way as the GDMA TX buffer, by setting GDMA_INLINK_START_CHn

or GDMA_INLINK_RESTART_CHn.

• The TX and RX data lengths are determined by the configured GDMA TX and RX buffer respectively, both of

which are 0 ~ 32 KB.

• Initialize GDMA inlink and outlink before GDMA starts. The bits SPI_DMA_RX_ENA and SPI_DMA_TX_ENA

in register SPI_DMA_CONF_REG should be set, otherwise the read/write data will be stored to/sent from

the registers SPI_W0_REG ~ SPI_W15_REG.

In master mode, if GDMA_IN_SUC_EOF_CHn_INT_ENA is set, then the interrupt GDMA_IN_SUC_EOF_CHn_INT

will be triggered when one single transfer or one configurable segmented transfer is finished.

In slave mode, if GDMA_IN_SUC_EOF_CHn_INT_ENA is set, then the interrupt GDMA_IN_SUC_EOF_CHn_INT

will be triggered when one of the following conditions are met.

Table 20­7. Interrupt Trigger Condition on GP­SPI2 Data Transfer in Slave Mode

Transfer Type Control Bit1 Control Bit2 Condition

Slave Single Transfer
0 0 A single transfer is done.

1 0 A single transfer is done. Or the length of the received

data is equal to (SPI_MS_DATA_BITLEN + 1)

Slave Segmented Transfer
0 1 (CMD7 or End_SEG_TRANS) is received correctly.

1 1 (CMD7 or End_SEG_TRANS) is received correctly.

Or the length of the received data is equal to

(SPI_MS_DATA_BITLEN + 1)

1 SPI_RX_EOF_EN
2 SPI_DMA_SLV_SEG_TRANS_EN

20.5.6.2 GDMA TX/RX Buffer Length Control

It is recommended that the length of configured GDMA TX/RX buffer is equal to the length of real transferred

data.

• If the length of configured GDMA TX buffer is shorter than that of real transferred data, the extra data will be

the same as the last transferred data. SPI_OUTFIFO_EMPTY_ERR_INT and GDMA_OUT_EOF_CHn_INT

are triggered.

• If the length of configured GDMA TX buffer is longer than that of real transferred data, the TX buffer is not

fully used, and the remaining buffer will be used for following transaction even if a new TX buffer is linked

later. Please keep it in mind. Or save the unused data and reset DMA.

• If the length of configured GDMA RX buffer is shorter than that of real transferred data, the extra data will be

lost. The interrupts SPI_INFIFO_FULL_ERR_INT and SPI_TRANS_DONE_INT are triggered. But

GDMA_IN_SUC_EOF_CHn_INT interrupt is not generated.

• If the length of configured GDMA RX buffer is longer than that of real transferred data, the RX buffer is not

fully used, and the remaining buffer is discarded. In the following transaction, a new linked buffer will be

used directly.

Espressif Systems 352
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

20.5.7 Data Flow Control in GP­SPI2 Master and Slave Modes

CPU-controlled and DMA-controlled transfers are supported in GP-SPI2 master and slave modes.

CPU-controlled transfer means that data is transferred between registers SPI_W0_REG ~ SPI_W15_REG and the

SPI device. DMA-controlled transfer means that data is transferred between the configured GDMA TX/RX buffer

and the SPI device. To select between the two transfer modes, configure SPI_DMA_RX_ENA and

SPI_DMA_TX_ENA before the transfer starts.

20.5.7.1 GP­SPI2 Functional Blocks

Figure 20­3. GP­SPI2 Block Diagram

Figure 20-3 shows the main functional blocks in GP-SPI2, including:

• Master FSM: all the features, supported in GP-SPI2 master mode, are controlled by this state machine

together with register configuration.

• SPI Buffer: SPI_W0_REG ~ SPI_W15_REG, see Figure 20-2. The data transferred in CPU-controlled mode

is prepared in this buffer.

• Timing Module: capture data on FSPI bus.

• spi_mst/slv_din_ctrl and spi_mst/slv_dout_ctrl: convert the TX/RX data into bytes.

• spi_rx_afifo: store the received data.

• buf_tx_afifo: store the data to send.

• dma_tx_afifo: store the data from GDMA.

• clk_spi_mst: this clock is the module clock of GP-SPI2 and derived from PLL_CLK. It is used in GP-SPI2

master mode, to generate SPI_CLK signal for data transfer and for slaves.

• SPI_CLK Generator: generate SPI_CLK by dividing clk_spi_mst. The divider is determined by

SPI_CLKCNT_N and SPI_CLKDIV_PRE, see Section 20.7.

• SPI_CLK_out Mode Control: output the SPI_CLK signal for data transfer and for slaves.

• SPI_CLK_in Mode Control: capture the SPI_CLK signal from SPI master when GP-SPI2 works as a slave.

Espressif Systems 353
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

20.5.7.2 Data Flow Control in Master Mode

Figure 20­4. Data Flow Control in GP­SPI2 Master Mode

Figure 20-4 shows the data flow of GP-SPI2 in master mode. Its control logic is as follows:

• RX data: data in FSPI bus is captured by Timing Module, converted in units of bytes by spi_mst_din_ctrl

module, then buffered in spi_rx_afifo, and finally stored in corresponding addresses according to the

transfer modes.

– CPU-controlled transfer: the data is stored to registers SPI_W0_REG ~ SPI_W15_REG.

– DMA-controlled transfer: the data is stored to GDMA RX buffer.

• TX data: the TX data is from corresponding addresses according to transfer modes and is saved to

buf_tx_afifo.

– CPU-controlled transfer: TX data is from SPI_W0_REG ~ SPI_W15_REG.

– DMA-controlled transfer: TX data is from GDMA TX buffer.

The data in buf_tx_afifo is sent out to Timing Module in 1/2/4-bit modes, controlled by GP-SPI2 state machine.

The Timing Module can be used for timing compensation. For more information, see Section 20.8.

20.5.7.3 Data Flow Control in Slave Mode

Figure 20­5. Data Flow Control in GP­SPI2 Slave Mode

Espressif Systems 354
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Figure 20-5 shows the data flow in GP-SPI2 slave mode. Its control logic is as follows:

• In CPU/DMA-controlled full-duplex/half-duplex modes, when an external SPI master starts the SPI transfer,

data on the FSPI bus is captured, converted into unit of bytes by the spi_slv_din_ctrl module, and then is

stored in spi_rx_afifo.

– In CPU-controlled full-duplex transfer, the received data in spi_rx_afifo will be later stored into registers

SPI_W0_REG ~ SPI_W15_REG, successively.

– In half-duplex Wr_BUF transfer, when the value of address (SLV_ADDR[7:0]) is received, the received

data in spi_rx_afifo will be stored in the related address of registers SPI_W0_REG ~ SPI_W15_REG

– In DMA-controlled full-duplex transfer or in half-duplex Wr_DMA transfer, the received data in

spi_rx_afifo will be stored in the configured GDMA RX buffer.

• In CPU-controlled full-/half-duplex transfer, the data to send is stored in buf_tx_afifo. In DMA-controlled

full-/half-duplex transfer, the data to send is stored in dma_tx_afifo. Therefore, Rd_BUF transaction

controlled by CPU and Rd_DMA transaction controlled by DMA can be done in one slave segmented

transfer. TX data comes from corresponding addresses according the transfer modes.

– In CPU-controlled full-duplex transfer, when SPI_SLAVE_MODE and SPI_DOUTDIN are set and

SPI_DMA_TX_ENA is cleared, the data in SPI_W0_REG ~ SPI_W15_REG will be stored into

buf_tx_afifo;

– In CPU-controlled half-duplex transfer, when SPI_SLAVE_MODE is set, SPI_DOUTDIN is cleared,

Rd_BUF command and SLV_ADDR[7:0] are received, the data started from the related address of

SPI_W0_REG ~ SPI_W15_REG will be stored into buf_tx_afifo;

– In DMA-controlled full-duplex transfer, when SPI_SLAVE_MODE, SPI_DOUTDIN and

SPI_DMA_TX_ENA are set, the data in the configured GDMA TX buffer will be stored into dma_tx_afifo;

– In DMA-controlled half-duplex transfer, when SPI_SLAVE_MODE is set, SPI_DOUTDIN is cleared, and

Rd_DMA command is received, the data in the configured GDMA TX buffer will be stored into

dma_tx_afifo.

The data in buf_tx_afifo or dma_tx_afifo is sent out by spi_slv_dout_ctrl module in 1/2/4-bit modes.

20.5.8 GP­SPI2 Works as a Master

GP-SPI2 can be configured as a SPI master by clearing the bit SPI_SLAVE_MODE in SPI_SLAVE_REG. In this

operation mode, GP-SPI2 provides clock signal (the divided clock from GP-SPI2 module clock) and six CS lines

(CS0 ~ CS5).

Note:

• The length of transferred data must be an integral multiple of byte (8 bits), otherwise the extra bits will be lost. The

extra bits here means the result of total data bits mod 8.

• To transfer bits that is not an integral multiple of byte (8 bits), consider implementing it in CMD state or ADDR state.

Espressif Systems 355
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

20.5.8.1 State Machine

When GP-SPI2 works as a master, the state machine controls its various states during data transfer, including

configuration (CONF), preparation (PREP), command (CMD), address (ADDR), dummy (DUMMY), data out

(DOUT), and data in (DIN) states. GP-SPI2 is mainly used to access 1/2/4-bit SPI devices, such as flash and

external RAM, thus the naming of GP-SPI2 states keeps consistent with the sequence naming of flash and

external RAM. The meaning of each state is described as follows and Figure 20-6 shows the workflow of

GP-SPI2 state machine.

1. IDLE: GP-SPI2 is not active or is in slave mode.

2. CONF: only used in DMA-controlled configurable segmented transfer. Set SPI_USR and SPI_USR_CONF

to enable this state. If this state is not enabled, it means the current transfer is a single transfer.

3. PREP: prepare an SPI transaction and control SPI CS setup time. Set SPI_USR and SPI_CS_SETUP to

enable this state.

4. CMD: send command sequence. Set SPI_USR and SPI_USR_COMMAND to enable this state.

5. ADDR: send address sequence. Set SPI_USR and SPI_USR_ADDR to enable this state.

6. DUMMY (wait cycle): send dummy sequence. Set SPI_USR and SPI_USR_DUMMY to enable this state.

7. DATA: transfer data.

• DOUT: send data sequence. Set SPI_USR and SPI_USR_MOSI to enable this state.

• DIN: receive data sequence. Set SPI_USR and SPI_USR_MISO to enable this state.

8. DONE: control SPI CS hold time. Set SPI_USR to enable this state.

Espressif Systems 356
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

P
R
E
LIM

IN
A
R
Y

20
S
P
IC

ontroller
(S
P
I)

GoBack

Figure 20­6. GP­SPI2 State Machine in Master Mode

E
spressifS

ystem
s

357
S
ubm

itD
ocum

entation
Feedback

E
S
P
8684

TR
M

(P
re-release

v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Legend to state flow:

• —: indicates corresponding state condition is not satisfied; repeats current state.

• —: corresponding registers are set and conditions are satisfied; goes to next state.

• —: state registers are not set; skips one or more following states, depending on the registers of the

following states are set or not.

Explanation to the conditions listed in the figure above:

• CONF condition: gpc[17:0] >= SPI_CONF_BITLEN[17:0]

• PREP condition: gpc[4:0] >= SPI_CS_SETUP_TIME[4:0]

• CMD condition: gpc[3:0] >= SPI_USR_COMMAND_BITLEN[3:0]

• ADDR condition: gpc[4:0] >= SPI_USR_ADDR_BITLEN[4:0]

• DUMMY condition: gpc[7:0] >= SPI_USR_DUMMY_CYCLELEN[7:0]

• DOUT condition: gpc[17:0] >= SPI_MS_DATA_BITLEN[17:0]

• DIN condition: gpc[17:0] >= SPI_MS_DATA_BITLEN[17:0]

• DONE condition: (gpc[4:0] >= SPI_CS_HOLD_TIME[4:0] || SPI_CS_HOLD == 1’b0)

A counter (gpc[17:0]) is used in the state machine to control the cycle length of each state. The states CONF,

PREP, CMD, ADDR, DUMMY, DOUT, and DIN can be enabled or disabled independently. The cycle length of

each state can also be configured independently.

20.5.8.2 Register Configuration for State and Bit Mode Control

Introduction

The registers, related to GP-SPI2 state control, are listed in Table 20-8. Users can enable QPI mode for GP-SPI2

by setting the bit SPI_QPI_MODE in register SPI_USER_REG.

Table 20­8. Registers Used for State Control in 1/2/4­bit Modes

State
Control Registers for 1­bit

Mode FSPI Bus

Control Registers for 2­bit

Mode FSPI Bus

Control Registers for 4­bit

Mode FSPI Bus

CMD

SPI_USR_COMMAND_VALUE

SPI_USR_COMMAND_BITLEN

SPI_USR_COMMAND

SPI_USR_COMMAND_VALUE

SPI_USR_COMMAND_BITLEN

SPI_FCMD_DUAL

SPI_USR_COMMAND

SPI_USR_COMMAND_VALUE

SPI_USR_COMMAND_BITLEN

SPI_FCMD_QUAD

SPI_USR_COMMAND

ADDR

SPI_USR_ADDR_VALUE

SPI_USR_ADDR_BITLEN

SPI_USR_ADDR

SPI_USR_ADDR_VALUE

SPI_USR_ADDR_BITLEN

SPI_USR_ADDR

SPI_FADDR_DUAL

SPI_USR_ADDR_VALUE

SPI_USR_ADDR_BITLEN

SPI_USR_ADDR

SPI_FADDR_QUAD

DUMMY
SPI_USR_DUMMY_CYCLELEN

SPI_USR_DUMMY

SPI_USR_DUMMY_CYCLELEN

SPI_USR_DUMMY

SPI_USR_DUMMY_CYCLELEN

SPI_USR_DUMMY

DIN
SPI_USR_MISO

SPI_MS_DATA_BITLEN

SPI_USR_MISO

SPI_MS_DATA_BITLEN

SPI_FREAD_DUAL

SPI_USR_MISO

SPI_MS_DATA_BITLEN

SPI_FREAD_QUAD

Espressif Systems 358
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Table 20­8. Registers Used for State Control in 1/2/4­bit Modes

State
Control Registers for 1­bit

Mode FSPI Bus

Control Registers for 2­bit

Mode FSPI Bus

Control Registers for 4­bit

Mode FSPI Bus

DOUT
SPI_USR_MOSI

SPI_MS_DATA_BITLEN

SPI_USR_MOSI

SPI_MS_DATA_BITLEN

SPI_FWRITE_DUAL

SPI_USR_MOSI

SPI_MS_DATA_BITLEN

SPI_FWRITE_QUAD

As shown in Table 20-8, the registers in each cell should be configured to set the FSPI bus to corresponding bit

mode, i.e. the mode shown in the table header, at a specific state (corresponding to the first column).

Configuration

For instance, when GP-SPI2 reads data, and

• CMD is in 1-bit mode

• ADDR is in 2-bit mode

• DUMMY is 8 clock cycles

• DIN is in 4-bit mode

The register configuration can be as follows:

1. Configure CMD state related registers.

• Configure the required command value in SPI_USR_COMMAND_VALUE.

• Configure command bit length in SPI_USR_COMMAND_BITLEN. SPI_USR_COMMAND_BITLEN =

expected bit length - 1.

• Set SPI_USR_COMMAND.

• Clear SPI_FCMD_DUAL and SPI_FCMD_QUAD.

2. Configure ADDR state related registers.

• Configure the required address value in SPI_USR_ADDR_VALUE.

• Configure address bit length in SPI_USR_ADDR_BITLEN. SPI_USR_ADDR_BITLEN = expected bit

length - 1.

• Set SPI_USR_ADDR and SPI_FADDR_DUAL.

• Clear SPI_FADDR_QUAD.

3. Configure DUMMY state related registers.

• Configure DUMMY cycles in SPI_USR_DUMMY_CYCLELEN. SPI_USR_DUMMY_CYCLELEN =

expected clock cycles - 1.

• Set SPI_USR_DUMMY.

4. Configure DIN state related registers.

• Configure read data bit length in SPI_MS_DATA_BITLEN. SPI_MS_DATA_BITLEN = bit length

expected - 1.

• Set SPI_FREAD_QUAD and SPI_USR_MISO.

Espressif Systems 359
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

• Clear SPI_FREAD_DUAL.

• Configure GDMA in DMA-controlled mode. In CPU controlled mode, no action is needed.

5. Clear SPI_USR_MOSI.

6. Set SPI_DMA_AFIFO_RST, SPI_BUF_AFIFO_RST, and SPI_RX_AFIFO_RST to reset these buffers.

7. Set SPI_USR to start GP-SPI2 transfer.

When writing data (DOUT state), SPI_USR_MOSI should be configured instead, while SPI_USR_MISO should be

cleared. The output data bit length is the value of SPI_MS_DATA_BITLEN + 1. Output data should be configured

in GP-SPI2 data buffer (SPI_W0_REG ~ SPI_W15_REG) in CPU-controlled mode, or GDMA TX buffer in

DMA-controlled mode. The data byte order is incremented from LSB (byte 0) to MSB.

Pay special attention to the command value in SPI_USR_COMMAND_VALUE and to address value in

SPI_USR_ADDR_VALUE.

The configuration of command value is as follows:

Table 20­9. Sending Sequence of Command Value

COMMAND_BITLEN1 COMMAND_VALUE2 BIT_ORDER3 Sending Sequence of Command Value

0 - 7 [7:0]
1 COMMAND_VALUE[COMMAND_BITLEN:0] is

sent first.

0 COMMAND_VALUE[7:7 - COM-

MAND_BITLEN] is sent first.

8 - 15 [15:0]
1 COMMAND_VALUE[7:0] is sent first, and then

COMMAND_VALUE[COMMAND_BITLEN:8] is

sent.

0 COMMAND_VALUE[7:0] is sent first, and

then COMMAND_VALUE[15:15 - COM-

MAND_BITLEN] is sent.

1 SPI_USR_COMMAND_BITLEN: this field is used to configure the bit length of the command.
2 SPI_USR_COMMAND_VALUE: command value is written into this field. For which part of this field is used,

see the table above.
3 SPI_WR_BIT_ORDER: 0: LSB first; 1: MSB first.

The configuration of address value is as follows:

Table 20­10. Sending Sequence of Address Value

ADDR_BITLEN1 ADDR_VALUE2 BIT_ORDER3 Sending Sequence of Address Value

0 - 7 [31:24]
1 ADDR_VALUE[ADDR_BITLEN + 24:24] is sent first.

0 ADDR_VALUE[31:31 - ADDR_BITLEN] is sent first.

8 - 15 [31:16]
1 ADDR_VALUE[31:24] is sent first, and then

ADDR_VALUE[ADDR_BITLEN + 8:16] is sent.

0 ADDR_VALUE[31:24] is sent first, and then

ADDR_VALUE[23:31 - ADDR_BITLEN] is sent.

16 - 23 [31:8]
1 ADDR_VALUE[31:16] is sent first, and then

ADDR_VALUE[ADDR_BITLEN - 8:8] is sent.

Espressif Systems 360
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

0 ADDR_VALUE[31:16] is sent first, and then

ADDR_VALUE[15:31 - ADDR_BITLEN] is sent.

24 - 31 [31:0]
1 ADDR_VALUE[31:8] is sent first, and then

ADDR_VALUE[ADDR_BITLEN - 24:0] is sent.

0 ADDR_VALUE[31:8] is sent first, and then

ADDR_VALUE[7:31 - ADDR_BITLEN] is sent.

1 SPI_USR_ADDR_BITLEN: this field is used to configure the bit length of the address.
2 SPI_USR_ADDR_VALUE: address value is written into this field. For which part of this field is used, see

the table above.
3 SPI_WR_BIT_ORDER: 0: LSB first; 1: MSB first.

20.5.8.3 Full­Duplex Communication (1­bit Mode Only)

Introduction

GP-SPI2 supports SPI full-duplex communication. In this mode, SPI master provides CLK and CS signals,

exchanging data with SPI slave in 1-bit mode via MOSI (FSPID, sending) and MISO (FSPIQ, receiving) at the

same time. To enable this communication mode, set the bit SPI_DOUTDIN in register SPI_USER_REG. Figure

20-7 illustrates the connection of GP-SPI2 with its slave in full-duplex communication.

Figure 20­7. Full­Duplex Communication Between GP­SPI2 Master and a Slave

In full-duplex communication, the behavior of states CMD, ADDR, DUMMY, DOUT and DIN are configurable.

Usually, the states CMD, ADDR and DUMMY are not used in this communication. The bit length of transferred

data is configured in SPI_MS_DATA_BITLEN. The actual bit length used in communication equals to

(SPI_MS_DATA_BITLEN + 1).

Configuration

To start a data transfer, follow the steps below:

• Configure the IO path via IO MUX or GPIO matrix between GP-SPI2 and an external SPI device.

• Configure APB clock (APB_CLK, see Chapter 6 Reset and Clock) and module clock (clk_spi_mst) for the

GP-SPI2 module.

• Set SPI_DOUTDIN and clear SPI_SLAVE_MODE, to enable full-duplex communication in master mode.

• Configure GP-SPI2 registers listed in Table 20-8.

• Configure SPI CS setup time and hold time according to Section 20.6.

• Set the property of FSPICLK according to Section 20.7.

Espressif Systems 361
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

• Prepare data according to the selected transfer mode:

– In CPU-controlled MOSI mode, prepare data in registers SPI_W0_REG ~ SPI_W15_REG.

– In DMA-controlled mode,

* configure SPI_DMA_TX_ENA/SPI_DMA_RX_ENA

* configure GDMA TX/RX link

* start GDMA TX/RX engine, as described in Section 20.5.6 and Section 20.5.7.

• Configure interrupts and wait for SPI slave to get ready for transfer.

• Set SPI_DMA_AFIFO_RST, SPI_BUF_AFIFO_RST, and SPI_RX_AFIFO_RST to reset these buffers.

• Set SPI_USR in register SPI_CMD_REG to start the transfer and wait for the configured interrupts.

20.5.8.4 Half­Duplex Communication (1/2/4­bit Mode)

Introduction

In this mode, GP-SPI2 provides CLK and CS signals. Only one side (SPI master or slave) can send data at a

time, while the other side receives the data. To enable this communication mode, clear the bit SPI_DOUTDIN in

register SPI_USER_REG. The standard format of SPI half-duplex communication is CMD + [ADDR +] [DUMMY +]

[DOUT or DIN]. The states ADDR, DUMMY, DOUT, and DIN are optional, and can be disabled or enabled

independently.

As described in Section 20.5.8.2, the properties of GP-SPI2 states: CMD, ADDR, DUMMY, DOUT and DIN, such

as cycle length, value, and parallel bus bit mode, can be set independently. For the register configuration, see

Table 20-8.

The detailed properties of half-duplex GP-SPI2 are as follows:

1. CMD: 0 ~ 16 bits, master output, slave input.

2. ADDR: 0 ~ 32 bits, master output, slave input.

3. DUMMY: 0 ~ 256 FSPICLK cycles, master output, slave input.

4. DOUT: 0 ~ 512 bits (64 B) in CPU-controlled mode and 0 ~ 256 Kbits (32 KB) in DMA-controlled mode,

master output, slave input.

5. DIN: 0 ~ 512 bits (64 B) in CPU-controlled mode and 0 ~ 256 Kbits (32 KB) in DMA-controlled mode,

master input, slave output.

Configuration

The register configuration is as follows:

1. Configure the IO path via IO MUX or GPIO matrix between GP-SPI2 and an external SPI device.

2. Configure APB clock (APB_CLK) and module clock (clk_spi_mst) for the GP-SPI2 module.

3. Clear SPI_DOUTDIN and SPI_SLAVE_MODE, to enable half-duplex communication in master mode.

4. Configure GP-SPI2 registers listed in Table 20-8.

5. Configure SPI CS setup time and hold time according to Section 20.6.

6. Set the property of FSPICLK according to Section 20.7.

Espressif Systems 362
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

7. Prepare data according to the selected transfer mode:

• In CPU-controlled MOSI mode, prepare data in registers SPI_W0_REG ~ SPI_W15_REG.

• In DMA-controlled mode,

– configure SPI_DMA_TX_ENA/SPI_DMA_RX_ENA

– configure GDMA TX/RX link

– start GDMA TX/RX engine, as described in Section 20.5.6 and Section 20.5.7.

8. Configure interrupts and wait for SPI slave to get ready for transfer.

9. Set SPI_DMA_AFIFO_RST, SPI_BUF_AFIFO_RST, and SPI_RX_AFIFO_RST to reset these buffers.

10. Set SPI_USR in register SPI_CMD_REG to start the transfer and wait for the configured interrupts.

Application Example

The following example shows how GP-SPI2 accesses flash and external RAM in master half-duplex mode.

Figure 20­8. Connection of GP­SPI2 to Flash and External RAM in 4­bit Mode

Figure 20-9 indicates GP-SPI2 Quad I/O Read sequence according to standard flash specification. Other

GP-SPI2 command sequences are implemented in accordance with the requirements of SPI slaves.

Figure 20­9. SPI Quad I/O Read Command Sequence Sent by GP­SPI2 to Flash

Espressif Systems 363
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

20.5.8.5 DMA­Controlled Configurable Segmented Transfer

Note:

Note that there is no separate section on how to configure a single transfer in master mode, since the CONF state of a

configurable segmented transfer can be skipped to implement a single transfer.

Introduction

When GP-SPI2 works as a master, it provides a feature named: configurable segmented transfer controlled by

DMA.

A DMA-controlled transfer in master mode can be

• a single transfer, consisting of only one transaction;

• or a configurable segmented transfer, consisting of several transactions (segments).

In a configurable segmented transfer, the registers of each single transaction (segment) are configurable. This

feature enables GP-SPI2 to do as many transactions (segments) as configured after such transfer is triggered

once by the CPU. Figure 20-10 shows how this feature works.

Figure 20­10. Configurable Segmented Transfer in DMA­Controlled Master Mode

As shown in Figure 20-10, the registers for one transaction (segment n) can be reconfigured by GP-SPI2

hardware according to the content in its Conf_bufn during a CONF state, before this segment starts.

It’s recommended to provide separate GDMA CONF links and CONF buffers (Conf_bufi in Figure 20-10) for each

CONF state. A GDMA TX link is used to connect all the CONF buffers and TX data buffers (Tx_bufi in Figure

20-10) into a chain. Hence, the behavior of the FSPI bus in each segment can be controlled independently.

For example, in a configurable segmentent transfer, its segmenti, segmentj, and segmentk can be configured to

full-duplex, half-duplex MISO, and half-duplex MOSI, respectively. i, j, and k represent different segment

numbers.

Meanwhile, the state of GP-SPI2, the data length and cycle length of the FSPI bus, and the behavior of the

GDMA, can be configured independently for each segment. When this whole DMA-controlled transfer (consisting

of several segments) has finished, a GP-SPI2 interrupt, SPI_DMA_SEG_TRANS_DONE_INT, is triggered.

Configuration

Espressif Systems 364
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

1. Configure the IO path via IO MUX or GPIO matrix between GP-SPI2 and an external SPI device.

2. Configure APB clock (APB_CLK) and module clock (clk_spi_mst) for GP-SPI2 module.

3. Clear SPI_DOUTDIN and SPI_SLAVE_MODE, to enable half-duplex communication in master mode.

4. Configure GP-SPI2 registers listed in Table 20-8.

5. Configure SPI CS setup time and hold time according to Section 20.6.

6. Set the property of FSPICLK according to Section 20.7.

7. Prepare descriptors for GDMA CONF buffer and TX data (optional) for each segment. Chain the descriptors

of CONF buffer and TX buffers of several segments into one linked list.

8. Similarly, prepare descriptors for RX buffers for each segment and chain them into one linked list.

9. Configure all the needed CONF buffers, TX buffers and RX buffers, respectively for each segment before

this DMA-controlled transfer begins.

10. Point GDMA_OUTLINK_ADDR_CHn to the head address of the CONF and TX buffer descriptor linked list,

and then set GDMA_OUTLINK_START_CHn to start the TX GDMA.

11. Clear the bit SPI_RX_EOF_EN in register SPI_DMA_CONF_REG. Point GDMA_INLINK_ADDR_CHn to the

head address of the RX buffer descriptor linked list, and then set GDMA_INLINK_START_CHn to start the

RX GDMA.

12. Set SPI_USR_CONF to enable CONF state.

13. Set SPI_DMA_SEG_TRANS_DONE_INT_ENA to enable the SPI_DMA_SEG_TRANS_DONE_INT interrupt.

Configure other interrupts if needed according to Section 20.9.

14. Wait for all the slaves to get ready for transfer.

15. Set SPI_DMA_AFIFO_RST, SPI_BUF_AFIFO_RST and SPI_RX_AFIFO_RST, to reset these buffers.

16. Set SPI_USR to start this DMA-controlled transfer.

17. Wait for SPI_DMA_SEG_TRANS_DONE_INT interrupt, which means this transfer has finished and the data

has been stored into corresponding memory.

Configuration of CONF Buffer and Magic Value

In a configurable segmented transfer, only registers which will change from the last transaction (segment) need to

be re-configured to new values in CONF state. The configuration of other registers can be skipped (i.e. kept the

same) to save time and chip resources.

The first word in GDMA CONF bufferi, called SPI_BIT_MAP_WORD, defines whether each GP-SPI2 register is to

be updated or not in segmenti. The relation of SPI_BIT_MAP_WORD and GP-SPI2 registers to update can be

seen in Bitmap (BM) Table, Table 20-11. If a bit in the BM table is set to 1, its corresponding register value will be

updated in this segment. Otherwise, if some registers should be kept from being changed, the related bits should

be set to 0.

Table 20­11. BM Table for CONF State

BM Bit Register Name BM Bit Register Name

0 SPI_ADDR_REG 7 SPI_MISC_REG

1 SPI_CTRL_REG 8 reserved

Espressif Systems 365
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

2 SPI_CLOCK_REG 9 reserved

3 SPI_USER_REG 10 reserved

4 SPI_USER1_REG 11 SPI_DMA_CONF_REG

5 SPI_USER2_REG 12 SPI_DMA_INT_ENA_REG

6 SPI_MS_DLEN_REG 13 SPI_DMA_INT_CLR_REG

Then new values of all the registers to be modified should be placed right after SPI_BIT_MAP_WORD, in

consecutive words in the CONF buffer.

To ensure the correctness of the content in each CONF buffer, the value in SPI_BIT_MAP_WORD[31:28] is used

as “magic value”, and will be compared with SPI_DMA_SEG_MAGIC_VALUE in register SPI_SLAVE_REG. The

value of SPI_DMA_SEG_MAGIC_VALUE should be configured before this DMA-controlled transfer starts, and

can not be changed during these segments.

• If SPI_BIT_MAP_WORD[31:28] == SPI_DMA_SEG_MAGIC_VALUE, this DMA-controlled transfer continues

normally; the interrupt SPI_DMA_SEG_TRANS_DONE_INT is triggered at the end of this DMA-controlled

transfer.

• If SPI_BIT_MAP_WORD[31:28] != SPI_DMA_SEG_MAGIC_VALUE, GP-SPI2 state (spi_st) goes back to

IDLE and the transfer is ended immediately. The interrupt SPI_DMA_SEG_TRANS_DONE_INT is still

triggered, with SPI_SEG_MAGIC_ERR_INT_RAW bit set to 1.

CONF Buffer Configuration Example

Table 20-12 and Table 20-13 provide an example to show how to configure a CONF buffer for a transaction

(segment i) in which SPI_ADDR_REG, SPI_CTRL_REG, SPI_CLOCK_REG, SPI_USER_REG, SPI_USER1_REG

need to be updated.

Table 20­12. An Example of CONF bufferi in Segmenti

CONF bufferi Note

SPI_BIT_MAP_WORD The first word in this buffer. Its value is 0xA000001F in this example

when the SPI_DMA_SEG_MAGIC_VALUE is set to 0xA. As shown

in Table 20-13, bits 0, 1, 2, 3, and 4 are set, indicating the following

registers will be updated.

SPI_ADDR_REG The second word, stores the new value to SPI_ADDR_REG.

SPI_CTRL_REG The third word, stores the new value to SPI_CTRL_REG.

SPI_CLOCK_REG The fourth word, stores the new value to SPI_CLOCK_REG.

SPI_USER_REG The fifth word, stores the new value to SPI_USER_REG.

SPI_USER1_REG The sixth word, stores the new value to SPI_USER1_REG.

Espressif Systems 366
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Table 20­13. BM Bit Value v.s. Register to Be Updated in This Example

BM Bit Value Register Name BM Bit Value Register Name

0 1 SPI_ADDR_REG 7 0 SPI_MISC_REG

1 1 SPI_CTRL_REG 8 0 reserved

2 1 SPI_CLOCK_REG 9 0 reserved

3 1 SPI_USER_REG 10 0 reserved

4 1 SPI_USER1_REG 11 0 SPI_DMA_CONF_REG

5 0 SPI_USER2_REG 12 0 SPI_DMA_INT_ENA_REG

6 0 SPI_MS_DLEN_REG 13 0 SPI_DMA_INT_CLR_REG

Notes:

In a DMA-controlled configurable segmented transfer, please pay special attention to the following bits:

• SPI_USR_CONF: set SPI_USR_CONF before SPI_USR is set, to enable this transfer.

• SPI_USR_CONF_NXT: if segmenti is not the final transaction of this whole DMA-controlled transfer, its

SPI_USR_CONF_NXT bit should be set to 1.

• SPI_CONF_BITLEN: GP-SPI2 CS setup time and hold time are programmable independently in each

segment, see Section 20.6 for detailed configuration. The CS high time in each segment is about:

(SPI_CONF_BITLEN + 5)× TAPB_CLK

The CS high time in CONF state can be set from 125 µs to 6.5536 ms when fAPB_CLK is 40 MHz.

(SPI_CONF_BITLEN + 5) will overflow from (0x40000 - SPI_CONF_BITLEN - 5) if SPI_CONF_BITLEN is

larger than 0x3FFFA.

20.5.9 GP­SPI2 Works as a Slave

GP-SPI2 can be used as a slave to communicate with an SPI master. As a slave, GP-SPI2 supports 1-bit SPI,

2-bit dual SPI, 4-bit quad SPI, and QPI modes, with specific communication formats. To enable this mode, set

SPI_SLAVE_MODE in register SPI_SLAVE_REG.

The CS signal must be held low during the transmission, and its falling/rising edges indicate the start/end of a

single or segmented transmission. The length of transferred data must be in unit of bytes, otherwise the extra

bits will be lost. The extra bits here means the result of total bits % 8.

20.5.9.1 Communication Formats

In GP-SPI2 slave mode, SPI full-duplex and half-duplex communications are available. To select from the two

communications, configure SPI_DOUTDIN in register SPI_USER_REG.

Full-duplex communication means that input data and output data are transmitted simultaneously throughout the

entire transaction. All bits are treated as input or output data, which means no command, address or dummy

states are expected. The interrupt SPI_TRANS_DONE_INT is triggered once the transaction ends.

In half-duplex communication, the format is CMD+ADDR+DUMMY+DATA (DIN or DOUT).

• “DIN” means that an SPI master reads data from GP-SPI2.

• “DOUT” means that an SPI master writes data to GP-SPI2.

Espressif Systems 367
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

The detailed properties of each state are as follows:

1. CMD:

• Indicate the function of SPI slave;

• One byte from master to slave;

• Only the values in Table 20-14 and Table 20-15 are valid;

• Can be sent in 1-bit SPI mode or 4-bit QPI mode.

2. ADDR:

• The address for Wr_BUF and Rd_BUF commands in CPU-controlled transfer, or placeholder bits in

other transfers and can be defined by application;

• One byte from master to slave;

• Can be sent in 1-bit, 2-bit or 4-bit modes (according to the command).

3. DUMMY:

• Its value is meaningless. SPI slave prepares data in this state;

• Bit mode of FSPI bus is also meaningless here;

• Last for eight SPI_CLK cycles.

4. DIN or DOUT:

• Data length can be 0 ~ 64 B in CPU-controlled mode and unlimited in DMA-controlled mode;

• Can be sent in 1-bit, 2-bit or 4-bit modes according to the CMD value.

Note:

The states of ADDR and DUMMY can never be skipped in any half-duplex communications.

When a half-duplex transaction is complete, the transferred CMD and ADDR values are latched into

SPI_SLV_LAST_COMMAND and SPI_SLV_LAST_ADDR respectively. The SPI_SLV_CMD_ERR_INT_RAW will be

set if the transferred CMD value is not supported by GP-SPI2 slave mode. The SPI_SLV_CMD_ERR_INT_RAW

can only be cleared by software.

20.5.9.2 Supported CMD Values in Half­Duplex Communication

In half-duplex communication, the defined values of CMD determine the transfer types. Unsupported CMD

values are disregarded, meanwhile the related transfer is ignored and SPI_SLV_CMD_ERR_INT_RAW is set. The

transfer format is CMD (8 bits) + ADDR (8 bits) + DUMMY (8 SPI_CLK cycles) + DATA (unit in bytes). The detailed

description of CMD[3:0] is as follows:

• 0x1 (Wr_BUF): CPU-controlled write mode. Master sends data and GP-SPI2 receives data. The data is

stored in the related address of SPI_W0_REG ~ SPI_W15_REG.

• 0x2 (Rd_BUF): CPU-controlled read mode. Master receives the data sent by GP-SPI2. The data comes

from the related address of SPI_W0_REG ~ SPI_W15_REG.

• 0x3 (Wr_DMA): DMA-controlled write mode. Master sends data and GP-SPI2 receives data. The data is

stored in GP-SPI2 GDMA RX buffer.

Espressif Systems 368
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

• 0x4 (Rd_DMA): DMA-controlled read mode. Master receives the data sent by GP-SPI2. The data comes

from GP-SPI2 GDMA TX buffer.

• 0x7 (CMD7): used to generate an SPI_SLV_CMD7_INT interrupt. It can also generate a

GDMA_IN_SUC_EOF_CHn_INT interrupt in a slave segmented transfer when GDMA RX link is used. But it

will not end GP-SPI2’s slave segmented transfer.

• 0x8 (CMD8): only used to generate an SPI_SLV_CMD8_INT interrupt, which will not end GP-SPI2’s slave

segmented transfer.

• 0x9 (CMD9): only used to generate an SPI_SLV_CMD9_INT interrupt, which will not end GP-SPI2’s slave

segmented transfer.

• 0xA (CMDA): only used to generate an SPI_SLV_CMDA_INT interrupt, which will not end GP-SPI2’s slave

segmented transfer.

The detailed function of CMD7, CMD8, CMD9, and CMDA commands is reserved for user definition. These

commands can be used as handshake signals, as passwords of some specific functions, as triggers of some

user defined actions, and so on.

1/2/4-bit modes in states of CMD, ADDR, DATA are supported, which are determined by value of CMD[7:4]. The

DUMMY state is always in 1-bit mode and lasts for eight SPI_CLK cycles. The definition of CMD[7:4] is as

follows:

• 0x0: CMD, ADDR, and DATA states all are in 1-bit mode.

• 0x1: CMD and ADDR are in 1-bit mode. DATA is in 2-bit mode.

• 0x2: CMD and ADDR are in 1-bit mode. DATA is in 4-bit mode.

• 0x5: CMD is in 1-bit mode. ADDR and DATA are in 2-bit mode.

• 0xA: CMD is in 1-bit mode, ADDR and DATA are in 4-bit mode. Or in QPI mode.

In addition, if the value of CMD[7:0] is 0x05, 0xA5, 0x06, or 0xDD, DUMMY and DATA states are skipped. The

definition of CMD[7:0] is as follows:

• 0x05 (End_SEG_TRANS): master sends 0x05 command to end slave segmented transfer in SPI mode.

• 0xA5 (End_SEG_TRANS): master sends 0xA5 command to end slave segmented transfer in QPI mode.

• 0x06 (En_QPI): GP-SPI2 enters QPI mode when receiving the 0x06 command and the bit SPI_QPI_MODE

in register SPI_USER_REG is set.

• 0xDD (Ex_QPI): GP-SPI2 exits QPI mode when receiving the 0xDD command and the bit SPI_QPI_MODE

is cleared.

All the CMD values supported by GP-SPI2 are listed in Table 20-14 and Table 20-15. Note that DUMMY state is

always in 1-bit mode and lasts for eight SPI_CLK cycles.

Table 20­14. Supported CMD Values in SPI Mode

Transfer Type CMD[7:0] CMD State ADDR State DATA State

Wr_BUF

0x01 1-bit mode 1-bit mode 1-bit mode

0x11 1-bit mode 1-bit mode 2-bit mode

0x21 1-bit mode 1-bit mode 4-bit mode

0x51 1-bit mode 2-bit mode 2-bit mode

Espressif Systems 369
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Table 20­14. Supported CMD Values in SPI Mode

Transfer Type CMD[7:0] CMD State ADDR State DATA State

0xA1 1-bit mode 4-bit mode 4-bit mode

Rd_BUF

0x02 1-bit mode 1-bit mode 1-bit mode

0x12 1-bit mode 1-bit mode 2-bit mode

0x22 1-bit mode 1-bit mode 4-bit mode

0x52 1-bit mode 2-bit mode 2-bit mode

0xA2 1-bit mode 4-bit mode 4-bit mode

Wr_DMA

0x03 1-bit mode 1-bit mode 1-bit mode

0x13 1-bit mode 1-bit mode 2-bit mode

0x23 1-bit mode 1-bit mode 4-bit mode

0x53 1-bit mode 2-bit mode 2-bit mode

0xA3 1-bit mode 4-bit mode 4-bit mode

Rd_DMA

0x04 1-bit mode 1-bit mode 1-bit mode

0x14 1-bit mode 1-bit mode 2-bit mode

0x24 1-bit mode 1-bit mode 4-bit mode

0x54 1-bit mode 2-bit mode 2-bit mode

0xA4 1-bit mode 4-bit mode 4-bit mode

CMD7

0x07 1-bit mode 1-bit mode -

0x17 1-bit mode 1-bit mode -

0x27 1-bit mode 1-bit mode -

0x57 1-bit mode 2-bit mode -

0xA7 1-bit mode 4-bit mode -

CMD8

0x08 1-bit mode 1-bit mode -

0x18 1-bit mode 1-bit mode -

0x28 1-bit mode 1-bit mode -

0x58 1-bit mode 2-bit mode -

0xA8 1-bit mode 4-bit mode -

CMD9

0x09 1-bit mode 1-bit mode -

0x19 1-bit mode 1-bit mode -

0x29 1-bit mode 1-bit mode -

0x59 1-bit mode 2-bit mode -

0xA9 1-bit mode 4-bit mode -

CMDA

0x0A 1-bit mode 1-bit mode -

0x1A 1-bit mode 1-bit mode -

0x2A 1-bit mode 1-bit mode -

0x5A 1-bit mode 2-bit mode -

0xAA 1-bit mode 4-bit mode -

End_SEG_TRANS 0x05 1-bit mode - -

En_QPI 0x06 1-bit mode - -

Espressif Systems 370
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Table 20­15. Supported CMD Values in QPI Mode

Transfer Type
CMD[7:0]

CMD State ADDR State DATA State

Wr_BUF 0xA1 4-bit mode 4-bit mode 4-bit mode

Rd_BUF 0xA2 4-bit mode 4-bit mode 4-bit mode

Wr_DMA 0xA3 4-bit mode 4-bit mode 4-bit mode

Rd_DMA 0xA4 4-bit mode 4-bit mode 4-bit mode

CMD7 0xA7 4-bit mode 4-bit mode -

CMD8 0xA8 4-bit mode 4-bit mode -

CMD9 0xA9 4-bit mode 4-bit mode -

CMDA 0xAA 4-bit mode 4-bit mode -

End_SEG_TRANS 0xA5 4-bit mode 4-bit mode -

Ex_QPI 0xDD 4-bit mode 4-bit mode -

Master sends 0x06 CMD (En_QPI) to set GP-SPI2 slave to QPI mode and all the states of supported transfer will

be in 4-bit mode afterwards. If 0xDD CMD (Ex_QPI) is received, GP-SPI2 slave will be back to SPI mode.

Other transfer types than described in Table 20-14 and Table 20-15 are ignored. If the transferred data is not in

unit of byte, GP-SPI2 will send or receive the data in unit of byte, but the extra bits (the result of total bits mod 8)

will be lost. But if the CS low time is longer than 2 APB clock (APB_CLK) cycles, SPI_TRANS_DONE_INT will be

triggered. For more information on interrupts triggered at the end of transmissions, please refer to Section

20.9.

20.5.9.3 Slave Single Transfer and Slave Segmented Transfer

When GP-SPI2 works as a slave, it supports full-duplex and half-duplex communications controlled by DMA and

by CPU. DMA-controlled transfer can be a single transfer, or a slave segmented transfer consisting of several

transactions (segments). The CPU-controlled transfer can only be one single transfer, since each CPU-controlled

transaction needs to be triggered by CPU.

In a slave segmented transfer, all transfer types listed in Table 20-14 and Table 20-15 are supported in a single

transaction (segment). It means that CPU-controlled transaction and DMA-controlled transaction can be mixed in

one slave segmented transfer.

It is recommended that in a slave segmented transfer:

• CPU-controlled transaction is used for handshake communication and short data transfers.

• DMA-controlled transaction is used for large data transfers.

20.5.9.4 Configuration of Slave Single Transfer

In slave mode, GP-SPI2 supports CPU/DMA-controlled full-duplex/half-duplex single transfers. The register

configuration procedure is as follows:

1. Configure the IO path via IO MUX or GPIO matrix between GP-SPI2 and an external SPI device.

2. Configure APB clock (APB_CLK).

3. Set the bit SPI_SLAVE_MODE, to enable slave mode.

Espressif Systems 371
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

4. Configure SPI_DOUTDIN:

• 1: enable full-duplex communication.

• 0: enable half-duplex communication.

5. Prepare data:

• if CPU-controlled transfer mode is selected and GP-SPI2 is used to send data, then prepare data in

registers SPI_W0_REG ~ SPI_W15_REG.

• if DMA-controlled transfer mode is selected,

– configure SPI_DMA_TX_ENA/SPI_DMA_RX_ENA and SPI_RX_EOF_EN.

– configure GDMA TX/RX link.

– start GDMA TX/RX engine, as described in Section 20.5.6 and Section 20.5.7.

6. Set SPI_DMA_AFIFO_RST, SPI_BUF_AFIFO_RST, and SPI_RX_AFIFO_RST to reset these buffers.

7. Clear SPI_DMA_SLV_SEG_TRANS_EN in register SPI_DMA_CONF_REG to enable slave single transfer

mode.

8. Set SPI_TRANS_DONE_INT_ENA in SPI_DMA_INT_ENA_REG and wait for the interrupt

SPI_TRANS_DONE_INT. In DMA-controlled mode, it is recommended to wait for the interrupt

GDMA_IN_SUC_EOF_CHn_INT when GDMA RX buffer is used, which means that data has been stored in

the related memory. Other interrupts described in Section 20.9 are optional.

20.5.9.5 Configuration of Slave Segmented Transfer in Half­Duplex

GDMA must be used in this mode. The register configuration procedure is as follows:

1. Configure the IO path via IO MUX or GPIO matrix between GP-SPI2 and an external SPI device.

2. Configure APB clock (APB_CLK).

3. Set SPI_SLAVE_MODE to enable slave mode.

4. Clear SPI_DOUTDIN to enable half-duplex communication.

5. Prepare data in registers SPI_W0_REG ~ SPI_W15_REG, if needed.

6. Set SPI_DMA_AFIFO_RST, SPI_BUF_AFIFO_RST and SPI_RX_AFIFO_RST to reset these buffers.

7. Set bits SPI_DMA_RX_ENA and SPI_DMA_TX_ENA. Clear the bit SPI_RX_EOF_EN. Configure GDMA

TX/RX link and start GDMA TX/RX engine, as shown in Section 20.5.6 and Section 20.5.7.

8. Set SPI_DMA_SLV_SEG_TRANS_EN in SPI_DMA_CONF_REG to enable slave segmented transfer.

9. Set SPI_DMA_SEG_TRANS_DONE_INT_ENA in SPI_DMA_INT_ENA_REG and wait for the interrupt SPI_

DMA_SEG_TRANS_DONE_INT, which means that the segmented transfer has finished and data has been

put into the related memory. Other interrupts described in Section 20.9 are optional.

When End_SEG_TRANS (0x05 in SPI mode, 0xA5 in QPI mode) is received by GP-SPI2, this slave segmented

transfer is ended and the interrupt SPI_DMA_SEG_TRANS_DONE_INT is triggered.

Espressif Systems 372
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

20.5.9.6 Configuration of Slave Segmented Transfer in Full­Duplex

GDMA must be used in this mode. In such transfer, the data is transferred from and to the GDMA buffer. The

interrupt GDMA_IN_SUC_EOF_CHn

_INT is triggered when the transfer ends. The configuration procedure is as follows:

1. Configure the IO path via IO MUX or GPIO matrix between GP-SPI2 and an external SPI device.

2. Configure APB clock (APB_CLK).

3. Set SPI_SLAVE_MODE and SPI_DOUTDIN, to enable full-duplex communication in slave mode.

4. Set SPI_DMA_AFIFO_RST, SPI_BUF_AFIFO_RST, and SPI_RX_AFIFO_RST, to reset these buffers.

5. Set SPI_DMA_TX_ENA/SPI_DMA_RX_ENA. Configure GDMA TX/RX link and start GDMA TX/RX engine, as

shown in Section 20.5.6 and Section 20.5.7.

6. Set the bit SPI_RX_EOF_EN in register SPI_DMA_CONF_REG. Configure SPI_MS_DATA_BITLEN[17:0] in

register SPI_MS_DLEN_REG to the byte length of the received DMA data.

7. Set SPI_DMA_SLV_SEG_TRANS_EN in SPI_DMA_CONF_REG to enable slave segmented transfer mode.

8. Set GDMA_IN_SUC_EOF_CHn_INT_ENA and wait for the interrupt GDMA_IN_SUC_EOF_CHn_INT.

20.6 CS Setup Time and Hold Time Control

SPI bus CS (SPI_CS) setup time and hold time are very important to meet the timing requirements of various SPI

devices (e.g. flash or PSRAM).

CS setup time is the time between the CS falling edge and the first latch edge of SPI bus CLK (SPI_CLK). The

first latch edge for mode 0 and mode 3 is rising edge, and falling edge for mode 2 and mode 4.

CS hold time is the time between the last latch edge of SPI_CLK and the CS rising edge.

In slave mode, the CS setup time and hold time should be longer than 0.5 x T_SPI_CLK, otherwise the SPI

transfer may be incorrect. T_SPI_CLK is one cycle of SPI_CLK.

In master mode, set the CS setup time by specifying SPI_CS_SETUP in SPI_USER_REG and

SPI_CS_SETUP_TIME in SPI_USER1_REG:

• If SPI_CS_SETUP is cleared, the SPI CS setup time is 0.5 x T_SPI_CLK.

• If SPI_CS_SETUP is set, the SPI CS setup time is (SPI_CS_SETUP_TIME + 1.5) x T_SPI_CLK.

Set the CS hold time by specifying SPI_CS_HOLD in SPI_USER_REG and SPI_CS_HOLD_TIME in

SPI_USER1_REG:

• If SPI_CS_HOLD is cleared, the SPI CS hold time is 0.5 x T_SPI_CLK;

• If SPI_CS_HOLD is set, the SPI CS hold time is (SPI_CS_HOLD_TIME + 1.5) x T_SPI_CLK.

Figure 20-11 and Figure 20-12 show the recommended CS timing and register configuration to access external

RAM and flash.

Espressif Systems 373
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Figure 20­11. Recommended CS Timing and Settings When Accessing External RAM

Figure 20­12. Recommended CS Timing and Settings When Accessing Flash

20.7 GP­SPI2 Clock Control

GP-SPI2 has the following clocks:

• clk_spi_mst: module clock of GP-SPI2, derived from PLL_CLK. Used in GP-SPI2 master mode, to

generate SPI_CLK signal for data transfer and for slaves.

• SPI_CLK: output clock in master mode.

• APB_CLK: clock for register configuration.

In master mode, the maximum output clock frequency of GP-SPI2 is fclk_spi_mst. To have slower frequencies, the

output clock frequency can be divided as follows:

Espressif Systems 374
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

fSPI_CLK =
fclk_spi_mst

(SPI_CLKCNT_N + 1)(SPI_CLKDIV_PRE + 1)

The divider is configured by SPI_CLKCNT_N and SPI_CLKDIV_PRE in register SPI_CLOCK_REG. When the bit

SPI_CLK_EQU_SYSCLK in register SPI_CLOCK_REG is set to 1, the output clock frequency of GP-SPI2 will be

fclk_spi_mst. For other integral clock divisions, SPI_CLK_EQU_SYSCLK should be set to 0.

In slave mode, the supported input clock frequency (fSPI_CLK) of GP-SPI2 is:

fSPI_CLK <= 40MHz

20.7.1 Clock Phase and Polarity

SPI protocol has four clock modes, modes 0 ~ 3, see Figure 20-13 and Figure 20-14 (excerpted from SPI

protocol):

Figure 20­13. SPI Clock Mode 0 or 2

Espressif Systems 375
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Figure 20­14. SPI Clock Mode 1 or 3

1. Mode 0: CPOL = 0, CPHA = 0; SCK is 0 when the SPI is in idle state; data is changed on the negative edge

of SCK and sampled on the positive edge. The first data is shifted out before the first negative edge of SCK.

2. Mode 1: CPOL = 0, CPHA = 1; SCK is 0 when the SPI is in idle state; data is changed on the positive edge

of SCK and sampled on the negative edge.

3. Mode 2: CPOL = 1, CPHA = 0; SCK is 1 when the SPI is in idle state; data is changed on the positive edge

of SCK and sampled on the negative edge. The first data is shifted out before the first positive edge of SCK.

4. Mode 3: CPOL = 1, CPHA = 1; SCK is 1 when the SPI is in idle state; data is changed on the negative

edge of SCK and sampled on the positive edge.

20.7.2 Clock Control in Master Mode

The four clock modes 0 ~ 3 are supported in GP-SPI2 master mode. The polarity and phase of GP-SPI2 clock

are controlled by the bit SPI_CK_IDLE_EDGE in register SPI_MISC_REG and the bit SPI_CK_OUT_EDGE in

register SPI_USER_REG. The register configuration for SPI clock modes 0 ~ 3 is provided in Table 20-16, and

can be changed according to the path delay in the application.

Table 20­16. Clock Phase and Polarity Configuration in Master Mode

Control Bit Mode 0 Mode 1 Mode 2 Mode 3

SPI_CK_IDLE_EDGE 0 0 1 1

SPI_CK_OUT_EDGE 0 1 1 0

SPI_CLK_MODE is used to select the number of rising edges of SPI_CLK, when SPI_CS raises high, to be 0, 1,

2 or SPI_CLK always on.

Espressif Systems 376
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Note:

When SPI_CLK_MODE is configured to 1 or 2, the bit SPI_CS_HOLD must be set and the value of SPI_CS_HOLD_TIME

should be larger than 1.

20.7.3 Clock Control in Slave Mode

GP-SPI2 slave mode also supports clock modes 0 ~ 3. The polarity and phase are configured by the bits

SPI_TSCK_I_EDGE and SPI_RSCK_I_EDGE in register SPI_USER_REG. The output edge of data is controlled by

SPI_CLK_MODE_13 in register SPI_SLAVE_REG. The detailed register configuration is shown in Table

20-17:

Table 20­17. Clock Phase and Polarity Configuration in Slave Mode

Control Bit Mode 0 Mode 1 Mode 2 Mode 3

SPI_TSCK_I_EDGE 0 1 1 0

SPI_RSCK_I_EDGE 0 1 1 0

SPI_CLK_MODE_13 0 1 0 1

20.8 GP­SPI2 Timing Compensation

The I/O lines are mapped via GPIO matrix or IO MUX. But there is no timing adjustment in IO MUX. The input data

and output data can be delayed for 1 or 2 APB_CLK cycles at the rising or falling edge in GPIO matrix. For

detailed register configuration, see Chapter 5 IO MUX and GPIO Matrix (GPIO, IO MUX).

In GP-SPI2 slave mode, if the bit SPI_RSCK_DATA_OUT in register SPI_SLAVE_REG is set to 1, the output data

is sent at latch edge, which is half an SPI clock cycle earlier. This can be used for slave mode timing

compensation.

20.9 Interrupts

Interrupt Summary

GP-SPI2 provides an SPI interface interrupt SPI_INT. When an SPI transfer ends, an interrupt is generated in

GP-SPI2.

• SPI_DMA_INFIFO_FULL_ERR_INT: triggered when GDMA RX FIFO length is shorter than the real

transferred data length.

• SPI_DMA_OUTFIFO_EMPTY_ERR_INT: triggered when GDMA TX FIFO length is shorter than the real

transferred data length.

• SPI_SLV_EX_QPI_INT: triggered when Ex_QPI is received correctly in GP-SPI2 slave mode and the SPI

transfer ends.

• SPI_SLV_EN_QPI_INT: triggered when En_QPI is received correctly in GP-SPI2 slave mode and the SPI

transfer ends.

• SPI_SLV_CMD7_INT: triggered when CMD7 is received correctly in GP-SPI2 slave mode and the SPI

transfer ends.

• SPI_SLV_CMD8_INT: triggered when CMD8 is received correctly in GP-SPI2 slave mode and the SPI

transfer ends.

Espressif Systems 377
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

• SPI_SLV_CMD9_INT: triggered when CMD9 is received correctly in GP-SPI2 slave mode and the SPI

transfer ends.

• SPI_SLV_CMDA_INT: triggered when CMDA is received correctly in GP-SPI2 slave mode and the SPI

transfer ends.

• SPI_SLV_RD_DMA_DONE_INT: triggered at the end of Rd_DMA transfer in slave mode.

• SPI_SLV_WR_DMA_DONE_INT: triggered at the end of Wr_DMA transfer in slave mode.

• SPI_SLV_RD_BUF_DONE_INT: triggered at the end of Rd_BUF transfer in slave mode.

• SPI_SLV_WR_BUF_DONE_INT: triggered at the end of Wr_BUF transfer in slave mode.

• SPI_TRANS_DONE_INT: triggered at the end of SPI bus transfer in both master and slave modes.

• SPI_DMA_SEG_TRANS_DONE_INT: triggered at the end of End_SEG_TRANS transfer in GP-SPI2 slave

segmented transfer mode or at the end of configurable segmented transfer in master mode.

• SPI_SEG_MAGIC_ERR_INT: triggered when a Magic error occurs in CONF buffer during configurable

segmented transfer in master mode.

• SPI_MST_RX_AFIFO_WFULL_ERR_INT: triggered by RX AFIFO write-full error in GP-SPI2 master mode.

• SPI_MST_TX_AFIFO_REMPTY_ERR_INT: triggered by TX AFIFO read-empty error in GP-SPI2 master

mode.

• SPI_SLV_CMD_ERR_INT: triggered when a received command value is not supported in GP-SPI2 slave

mode.

• SPI_APP2_INT: used and triggered by software. Only used for user defined function.

• SPI_APP1_INT: used and triggered by software. Only used for user defined function.

Interrupts Used in Master and Slave Modes

Table 20-18 and Table 20-19 show the interrupts used in GP-SPI2 master and slave modes. Set the interrupt

enable bit SPI_*_INT_ENA in SPI_DMA_INT_ENA_REG and wait for the SPI_INT interrupt. When the transfer

ends, the related interrupt is triggered and should be cleared by software before the next transfer.

Table 20­18. GP­SPI2 Master Mode Interrupts

Transfer Type Communication Mode Controlled by Interrupt

Single Transfer

Full-duplex
DMA GDMA_IN_SUC_EOF_CHn_INT 1

CPU SPI_TRANS_DONE_INT 2

Half-duplex MOSI Mode
DMA SPI_TRANS_DONE_INT

CPU SPI_TRANS_DONE_INT

Half-duplex MISO Mode
DMA GDMA_IN_SUC_EOF_CHn_INT

CPU SPI_TRANS_DONE_INT

Configurable Segmented Transfer

Full-duplex
DMA SPI_DMA_SEG_TRANS_DONE_INT 3

CPU Not supported

Half-duplex MOSI Mode
DMA SPI_DMA_SEG_TRANS_DONE_INT

CPU Not supported

Half-duplex MISO
DMA SPI_DMA_SEG_TRANS_DONE_INT

CPU Not supported

Continued on the next page

Espressif Systems 378
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Table 20­18 – Continued from the previous page

Transfer Type Communication Mode Controlled by Interrupt

1 If GDMA_IN_SUC_EOF_CHn_INT is triggered, it means all the RX data of GP-SPI2 has been stored in the RX buffer,

and the TX data has been transferred to the slave.
2 SPI_TRANS_DONE_INT is triggered when CS is high, which indicates that master has completed the data exchange

in SPI_W0_REG ∼ SPI_W15_REG with slave in this mode.
3 If SPI_DMA_SEG_TRANS_DONE_INT is triggered, it means that the whole configurable segmented transfer (consisting

of several segments) has finished, i.e. the RX data has been stored in the RX buffer completely and all the TX data has

been sent out.

Table 20­19. GP­SPI2 Slave Mode Interrupts

Transfer Type Communication Mode Controlled by Interrupt

Single Transfer

Full-duplex
DMA GDMA_IN_SUC_EOF_CHn_INT 1

CPU SPI_TRANS_DONE_INT 2

Half-duplex MOSI Mode
DMA (Wr_DMA) GDMA_IN_SUC_EOF_CHn_INT3

CPU (Wr_BUF) SPI_TRANS_DONE_INT4

Half-duplex MISO Mode
DMA (Rd_DMA) SPI_TRANS_DONE_INT5

CPU (Rd_BUF) SPI_TRANS_DONE_INT6

Slave Segmented Transfer

Full-duplex
DMA GDMA_IN_SUC_EOF_CHn_INT7

CPU Not supported8

Half-duplex MOSI Mode
DMA (Wr_DMA) SPI_DMA_SEG_TRANS_DONE_INT9

CPU (Wr_BUF) Not supported10

Half-duplex MISO Mode
DMA (Rd_DMA) SPI_DMA_SEG_TRANS_DONE_INT11

CPU (Rd_BUF) Not supported12

1 If GDMA_IN_SUC_EOF_CHn_INT is triggered, it means all the RX data has been stored in the RX buffer, and the

TX data has been sent to the slave.
2 SPI_TRANS_DONE_INT is triggered when CS is high, which indicates that master has completed the data

exchange in SPI_W0_REG ∼ SPI_W15_REG with slave in this mode.
3 SPI_SLV_WR_DMA_DONE_INT just means that the transmission on the SPI bus is done, but can not ensure

that all the push data has been stored in the RX buffer. For this reason, GDMA_IN_SUC_EOF_CHn_INT is

recommended.
4 Or wait for SPI_SLV_WR_BUF_DONE_INT.
5 Or wait for SPI_SLV_RD_DMA_DONE_INT.
6 Or wait for SPI_SLV_RD_BUF_DONE_INT.
7 Slave should set the total read data byte length in SPI_MS_DATA_BITLEN before the transfer begins. Set

SPI_RX_EOF_EN to 1 before the end of the interrupt program.
8 Master and slave should define a method to end the segmented transfer, such as via GPIO interrupt.
9 Master sends End_SEG_TRAN to end the segmented transfer or slave sets the total read data byte length in

SPI_MS_DATA_BITLEN and waits for GDMA_IN_SUC_EOF_CHn_INT.
10 Half-duplex Wr_BUF single transfer can be used in a slave segmented transfer.
11 Master sends End_SEG_TRAN to end the segmented transfer.
12 Half-duplex Rd_BUF single transfer can be used in a slave segmented transfer.

Espressif Systems 379
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

20.10 Register Summary

The addresses in this section are relative to SPI base address provided in Table 3-3 in Chapter 3 System and

Memory.

Name Description Address Access

User­defined control registers

SPI_CMD_REG Command control register 0x0000 varies

SPI_ADDR_REG Address value register 0x0004 R/W

SPI_USER_REG SPI USER control register 0x0010 varies

SPI_USER1_REG SPI USER control register 1 0x0014 R/W

SPI_USER2_REG SPI USER control register 2 0x0018 R/W

Control and configuration registers

SPI_CTRL_REG SPI control register 0x0008 R/W

SPI_MS_DLEN_REG SPI data bit length control register 0x001C R/W

SPI_MISC_REG SPI MISC register 0x0020 R/W

SPI_DMA_CONF_REG SPI DMA control register 0x0030 varies

SPI_SLAVE_REG SPI slave control register 0x00E0 varies

SPI_SLAVE1_REG SPI slave control register 1 0x00E4 R/W/SS

Clock control registers

SPI_CLOCK_REG SPI clock control register 0x000C R/W

SPI_CLK_GATE_REG SPI module clock and register clock control 0x00E8 R/W

Interrupt registers

SPI_DMA_INT_ENA_REG SPI DMA interrupt enable register 0x0034 R/W

SPI_DMA_INT_CLR_REG SPI DMA interrupt clear register 0x0038 WT

SPI_DMA_INT_RAW_REG SPI DMA interrupt raw register 0x003C varies

SPI_DMA_INT_ST_REG SPI DMA interrupt status register 0x0040 RO

SPI_DMA_INT_SET_REG SPI DMA interrupt software set register 0x0044 RO

CPU­controlled data buffer

SPI_W0_REG SPI CPU-controlled buffer 0 0x0098 R/W/SS

SPI_W1_REG SPI CPU-controlled buffer 1 0x009C R/W/SS

SPI_W2_REG SPI CPU-controlled buffer 2 0x00A0 R/W/SS

SPI_W3_REG SPI CPU-controlled buffer 3 0x00A4 R/W/SS

SPI_W4_REG SPI CPU-controlled buffer 4 0x00A8 R/W/SS

SPI_W5_REG SPI CPU-controlled buffer 5 0x00AC R/W/SS

SPI_W6_REG SPI CPU-controlled buffer 6 0x00B0 R/W/SS

SPI_W7_REG SPI CPU-controlled buffer 7 0x00B4 R/W/SS

SPI_W8_REG SPI CPU-controlled buffer 8 0x00B8 R/W/SS

SPI_W9_REG SPI CPU-controlled buffer 9 0x00BC R/W/SS

SPI_W10_REG SPI CPU-controlled buffer 10 0x00C0 R/W/SS

SPI_W11_REG SPI CPU-controlled buffer 11 0x00C4 R/W/SS

SPI_W12_REG SPI CPU-controlled buffer 12 0x00C8 R/W/SS

SPI_W13_REG SPI CPU-controlled buffer 13 0x00CC R/W/SS

SPI_W14_REG SPI CPU-controlled buffer 14 0x00D0 R/W/SS

SPI_W15_REG SPI CPU-controlled buffer 15 0x00D4 R/W/SS

Espressif Systems 380
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Name Description Address Access

Version register

SPI_DATE_REG Version control register 0x00F0 R/W

20.11 Registers

The addresses in this section are relative to SPI base address provided in Table 3-3 in Chapter 3 System and

Memory.

Register 20.1. SPI_CMD_REG (0x0000)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

SP
I_U
SR

0

24

SP
I_U
PD
AT
E

0

23

(re
se
rve
d)

0 0 0 0 0

22 18

SP
I_C
ON
F_
BI
TL
EN

0

17 0

Reset

SPI_CONF_BITLEN Define the SPI CLK cycles of SPI CONF state. Can be configured in CONF state.

(R/W)

SPI_UPDATE Set this bit to synchronize SPI registers from APB clock domain into SPI module clock

domain. This bit is only used in SPI master mode. (WT)

SPI_USR User-defined command enable. An SPI operation will be triggered when the bit is set.

The bit will be cleared once the operation done. 1: enable; 0: disable. Can not be changed by

CONF_buf. (R/W/SC)

Register 20.2. SPI_ADDR_REG (0x0004)

SP
I_U
SR
_A
DD
R_
VA
LU
E

0

31 0

Reset

SPI_USR_ADDR_VALUE Address to slave. Can be configured in CONF state. (R/W)

Espressif Systems 381
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.3. SPI_USER_REG (0x0010)

SP
I_U
SR
_C
OM

M
AN
D

1

31

SP
I_U
SR
_A
DD
R

0

30

SP
I_U
SR
_D
UM
M
Y

0

29

SP
I_U
SR
_M
IS
O

0

28

SP
I_U
SR
_M
OS
I

0

27

SP
I_U
SR
_D
UM
M
Y_
ID
LE

0

26

SP
I_U
SR
_M
OS
I_H
IG
HP
AR
T

0

25

SP
I_U
SR
_M
IS
O_
HI
GH
PA
RT

0

24

(re
se
rve
d)

0 0 0 0 0 0

23 18

SP
I_S
IO

0

17

(re
se
rve
d)

0

16

SP
I_U
SR
_C
ON
F_
NX
T

0

15

(re
se
rve
d)

0

14

SP
I_F
W
RI
TE
_Q
UA
D

0

13

SP
I_F
W
RI
TE
_D
UA
L

0

12

(re
se
rve
d)

0 0

11 10

SP
I_C
K_
OU
T_
ED
GE

0

9

SP
I_R
SC
K_
I_E
DG
E

0

8

SP
I_C
S_
SE
TU
P

1

7

SP
I_C
S_
HO
LD

1

6

SP
I_T
SC
K_
I_E
DG
E

0

5

(re
se
rve
d)

0

4

SP
I_Q
PI
_M
OD
E

0

3

(re
se
rve
d)

0 0

2 1

SP
I_D
OU
TD
IN

0

0

Reset

SPI_DOUTDIN Set the bit to enable full duplex communication. 1: enable; 0: disable. Can be

configured in CONF state. (R/W)

SPI_QPI_MODE 1: Enable QPI mode. 0: Disable QPI mode. This configuration is applicable when

the SPI controller works as master or slave. Can be configured in CONF state. (R/W/SS/SC)

SPI_TSCK_I_EDGE In slave mode, this bit can be used to change the polarity of TSCK. 0: TSCK =

SPI_CK_I. 1: TSCK = !SPI_CK_I. (R/W)

SPI_CS_HOLD Keep SPI CS lowwhen SPI is in DONE state. 1: enable; 0: disable. Can be configured

in CONF state. (R/W)

SPI_CS_SETUP Enable SPI CS when SPI is in prepare (PREP) state. 1: enable; 0: disable. Can be

configured in CONF state. (R/W)

SPI_RSCK_I_EDGE In slave mode, this bit can be used to change the polarity of RSCK. 0: RSCK =

!SPI_CK_I. 1: RSCK = SPI_CK_I. (R/W)

SPI_CK_OUT_EDGE This bit together with SPI_CK_IDLE_EDGE is used to control SPI clock mode.

Can be configured in CONF state. For more information, see Section 20.7.2. (R/W)

SPI_FWRITE_DUAL In write operations, read-data phase is in 2-bit mode. Can be configured in

CONF state. (R/W)

SPI_FWRITE_QUAD In write operations, read-data phase is in 4-bit mode. Can be configured in

CONF state. (R/W)

SPI_USR_CONF_NXT Enable the CONF state for the next transaction (segment) in a configurable

segmented transfer. Can be configured in CONF state. (R/W)

• If this bit is set, it means this configurable segmented transfer will continue its next transaction

(segment).

• If this bit is cleared, it means this transfer will end after the current transaction (segment) is

finished. Or this is not a configurable segmented transfer.

SPI_SIO Set the bit to enable 3-line half-duplex communication, where MOSI and MISO signals share

the same pin. 1: enable; 0: disable. Can be configured in CONF state. (R/W)

SPI_USR_MISO_HIGHPART In read-data phase, only access to high-part of the buffers:

SPI_W8_REG ~ SPI_W15_REG. 1: enable; 0: disable. Can be configured in CONF state. (R/W)

Continued on the next page...

Espressif Systems 382
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.3. SPI_USER_REG (0x0010)

Continued from the previous page...

SPI_USR_MOSI_HIGHPART In write-data phase, only access to high-part of the buffers:

SPI_W8_REG ~ SPI_W15_REG. 1: enable; 0: disable. Can be configured in CONF state. (R/W)

SPI_USR_DUMMY_IDLE If this bit is set, SPI clock is disabled in DUMMY state. Can be configured

in CONF state. (R/W)

SPI_USR_MOSI Set this bit to enable the write-data (DOUT) state of an operation. Can be configured

in CONF state. (R/W)

SPI_USR_MISO Set this bit to enable the read-data (DIN) state of an operation. Can be configured

in CONF state. (R/W)

SPI_USR_DUMMY Set this bit to enable the DUMMY state of an operation. Can be configured in

CONF state. (R/W)

SPI_USR_ADDR Set this bit to enable the address (ADDR) state of an operation. Can be configured

in CONF state. (R/W)

SPI_USR_COMMAND Set this bit to enable the command (CMD) state of an operation. Can be

configured in CONF state. (R/W)

Espressif Systems 383
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.4. SPI_USER1_REG (0x0014)

SP
I_U
SR
_A
DD
R_
BI
TL
EN

23

31 27

SP
I_C
S_
HO
LD
_T
IM
E

0x1

26 22

SP
I_C
S_
SE
TU
P_
TIM

E

0

21 17

SP
I_M

ST
_W
FU
LL
_E
RR
_E
ND
_E
N

1

16

(re
se
rve
d)

0 0 0 0 0 0 0 0

15 8

SP
I_U
SR
_D
UM
M
Y_
CY
CL
EL
EN

7

7 0

Reset

SPI_USR_DUMMY_CYCLELEN The length of DUMMY state, in unit of SPI_CLK cycles. This value

is (the expected cycle number - 1). Can be configured in CONF state. (R/W)

SPI_MST_WFULL_ERR_END_EN 1: SPI transfer is ended when SPI RX AFIFO wfull error occurs in

GP-SPI2 master full-/half-duplex modes. 0: SPI transfer is not ended when SPI RX AFIFO wfull

error occurs in GP-SPI2 master full-/half-duplex modes. (R/W)

SPI_CS_SETUP_TIME The length of prepare (PREP) state, in unit of SPI_CLK cycles. This value is

equal to the expected cycles -1. This field is used together with SPI_CS_SETUP. Can be configured

in CONF state. (R/W)

SPI_CS_HOLD_TIME Delay cycles of CS pin, in units of SPI_CLK cycles. This field is used together

with SPI_CS_HOLD. Can be configured in CONF state. (R/W)

SPI_USR_ADDR_BITLEN The bit length in address state. This value is (expected bit number - 1).

Can be configured in CONF state. (R/W)

Register 20.5. SPI_USER2_REG (0x0018)

SP
I_U
SR
_C
OM

M
AN
D_
BI
TL
EN

7

31 28

SP
I_M

ST
_R
EM
PT
Y_
ER
R_
EN
D_
EN

1

27

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

26 16

SP
I_U
SR
_C
OM

M
AN
D_
VA
LU
E

0

15 0

Reset

SPI_USR_COMMAND_VALUE The value of command. Can be configured in CONF state. (R/W)

SPI_MST_REMPTY_ERR_END_EN 1: SPI transfer is ended when SPI TX AFIFO read empty error

occurs in GP-SPI2 master full-/half-duplex modes. 0: SPI transfer is not ended when SPI TX AFIFO

read empty error occurs in GP-SPI2 master full-/half-duplex modes. (R/W)

SPI_USR_COMMAND_BITLEN The bit length of command state. This value is (expected bit number

- 1). Can be configured in CONF state. (R/W)

Espressif Systems 384
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.6. SPI_CTRL_REG (0x0008)

(re
se
rve
d)

0 0 0 0 0

31 27

SP
I_W

R_
BI
T_
OR
DE
R

0

26 25

SP
I_R
D_
BI
T_
OR
DE
R

0

24 23

(re
se
rve
d)

0

22

SP
I_W

P_
PO
L

1

21

SP
I_H
OL
D_
PO
L

1

20

SP
I_D
_P
OL

1

19

SP
I_Q
_P
OL

1

18

(re
se
rve
d)

0 0

17 16

SP
I_F
RE
AD
_Q
UA
D

0

15

SP
I_F
RE
AD
_D
UA
L

0

14

(re
se
rve
d)

0 0 0 0

13 10

SP
I_F
CM

D_
QU
AD

0

9

SP
I_F
CM

D_
DU
AL

0

8

(re
se
rve
d)

0

7

SP
I_F
AD
DR
_Q
UA
D

0

6

SP
I_F
AD
DR
_D
UA
L

0

5

(re
se
rve
d)

0

4

SP
I_D
UM
M
Y_
OU
T

0

3

(re
se
rve
d)

0 0 0

2 0

Reset

SPI_DUMMY_OUT 0: In the dummy phase, the FSPI bus signals are not output. 1: In the dummy

phase, the FSPI bus signals are output. Can be configured in CONF state. (R/W)

SPI_FADDR_DUAL Apply 2-bit mode during address (ADDR) state 1: enable; 0: disable. Can be

configured in CONF state. (R/W)

SPI_FADDR_QUAD Apply 4-bit mode during address (ADDR) state. 1:enable; 0: disable. Can be

configured in CONF state. (R/W)

SPI_FCMD_DUAL Apply 2-bit mode during command (CMD) state. 1: enable; 0: disable. Can be

configured in CONF state. (R/W)

SPI_FCMD_QUAD Apply 4-bit mode during command (CMD) state. 1: enable; 0: disable. Can be

configured in CONF state. (R/W)

SPI_FREAD_DUAL In read operations, read-data (DIN) state is in 2-bit mode. 1: enable; 0: disable.

Can be configured in CONF state. (R/W)

SPI_FREAD_QUAD In read operations, read-data (DIN) state is in 4-bit mode. 1: enable; 0: disable.

Can be configured in CONF state. (R/W)

SPI_Q_POL This bit is used to set MISO line polarity. 1: high; 0: low. Can be configured in CONF

state. (R/W)

SPI_D_POL This bit is used to set MOSI line polarity. 1: high; 0: low. Can be configured in CONF

state. (R/W)

SPI_HOLD_POL This bit is used to set SPI_HOLD output value when SPI is in idle. 1: output high;

0: output low. Can be configured in CONF state. (R/W)

SPI_WP_POL This bit is to set the output value of write-protect signal when SPI is in idle. 1: output

high; 0: output low. Can be configured in CONF state. (R/W)

SPI_RD_BIT_ORDER In read-data (MISO) state, 1: LSB first; 0: MSB first. Can be configured in

CONF state. (R/W)

SPI_WR_BIT_ORDER In command (CMD), address (ADDR), and write-data (MOSI) states, 1: LSB

first; 0: MSB first. Can be configured in CONF state. (R/W)

Espressif Systems 385
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.7. SPI_MS_DLEN_REG (0x001C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 18

SP
I_M

S_
DA
TA
_B
ITL
EN

0

17 0

Reset

SPI_MS_DATA_BITLEN The value of this field is the configured SPI transmission data bit length in

master mode DMA controlled transfer or CPU controlled transfer. The value is also the configured

bit length in slave mode DMA RX controlled transfer. The register value shall be (bit_num - 1). Can

be configured in CONF state. (R/W)

Espressif Systems 386
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.8. SPI_MISC_REG (0x0020)

(re
se
rve
d)

0

31

SP
I_C
S_
KE
EP
_A
CT
IVE

0

30

SP
I_C
K_
ID
LE
_E
DG
E

0

29

(re
se
rve
d)

0 0 0 0 0

28 24

SP
I_S
LA
VE
_C
S_
PO
L

0

23

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

22 13

SP
I_M

AS
TE
R_
CS
_P
OL

0

12 7

SP
I_C
K_
DI
S

0

6

SP
I_C
S5
_D
IS

1

5

SP
I_C
S4
_D
IS

1

4

SP
I_C
S3
_D
IS

1

3

SP
I_C
S2
_D
IS

1

2

SP
I_C
S1
_D
IS

1

1

SP
I_C
S0
_D
IS

0

0

Reset

SPI_CS0_DIS SPI CS0 pin enable bit. 1: disable CS0, 0: SPI_CS0 signal is from/to CS0 pin. Can be

configured in CONF state. (R/W)

SPI_CS1_DIS SPI CS1 pin enable bit. 1: disable CS1, 0: SPI_CS1 signal is from/to CS1 pin. Can be

configured in CONF state. (R/W)

SPI_CS2_DIS SPI CS2 pin enable bit. 1: disable CS2, 0: SPI_CS2 signal is from/to CS2 pin. Can be

configured in CONF state. (R/W)

SPI_CS3_DIS SPI CS3 pin enable bit. 1: disable CS3, 0: SPI_CS3 signal is from/to CS3 pin. Can be

configured in CONF state. (R/W)

SPI_CS4_DIS SPI CS4 pin enable bit. 1: disable CS4, 0: SPI_CS4 signal is from/to CS4 pin. Can be

configured in CONF state. (R/W)

SPI_CS5_DIS SPI CS5 pin enable bit. 1: disable CS5, 0: SPI_CS5 signal is from/to CS5 pin. Can be

configured in CONF state. (R/W)

SPI_CK_DIS 1: disable SPI_CLK output. 0: enable SPI_CLK output. Can be configured in CONF

state. (R/W)

SPI_MASTER_CS_POL SPI_MASTER_CS_POL[i] configures the polarity of SPI CSi (i is from 0 ~ 5)

line in master mode. 0: CSi is low active. 1: CSi is high active. Can be configured in CONF state.

(R/W)

SPI_SLAVE_CS_POL Configure SPI slave input CS polarity. 1: invert. 0: not change. Can be con-

figured in CONF state. (R/W)

SPI_CK_IDLE_EDGE 1: SPI_CLK line is high when GP-SPI2 is in idle. 0: SPI_CLK line is low when

GP-SPI2 is in idle. Can be configured in CONF state. (R/W)

SPI_CS_KEEP_ACTIVE SPI CS line keeps low when the bit is set. Can be configured in CONF state.

(R/W)

Espressif Systems 387
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.9. SPI_DMA_CONF_REG (0x0030)

SP
I_D
M
A_
AF
IFO
_R
ST

0

31

SP
I_B
UF
_A
FIF
O_
RS
T

0

30

SP
I_R
X_
AF
IFO
_R
ST

0

29

SP
I_D
M
A_
TX
_E
NA

0

28

SP
I_D
M
A_
RX
_E
NA

0

27

(re
se
rve
d)

0 0 0 0 0

26 22

SP
I_R
X_
EO
F_
EN

0

21

SP
I_S
LV
_T
X_
SE
G_
TR
AN
S_
CL
R_
EN

0

20

SP
I_S
LV
_R
X_
SE
G_
TR
AN
S_
CL
R_
EN

0

19

SP
I_D
M
A_
SL
V_
SE
G_
TR
AN
S_
EN

0

18

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 2

SP
I_D
M
A_
IN
FIF
O_
FU
LL

1

1

SP
I_D
M
A_
OU
TF
IFO
_E
M
PT
Y

1

0

Reset

SPI_DMA_OUTFIFO_EMPTY Records the status of DMA TX FIFO. 1: DMA TX FIFO is not ready for

sending data. 0: DMA TX FIFO is ready for sending data. (RO)

SPI_DMA_INFIFO_FULL Records the status of DMA RX FIFO. 1: DMA RX FIFO is not ready for

receiving data. 0: DMA RX FIFO is ready for receiving data. (RO)

SPI_DMA_SLV_SEG_TRANS_EN 1: enable DMA-controlled segmented transfer in slave half-duplex

mode. 0: disable. (R/W)

SPI_SLV_RX_SEG_TRANS_CLR_EN In slave segmented transfer, if the size of the DMA RX buffer is

smaller than the size of the received data, 1: the data in all the following Wr_DMA transactions will

not be received; 0: the data in this Wr_DMA transaction will not be received, but in the following

transactions, (R/W)

• if the size of DMARX buffer is not 0, the data in followingWr_DMA transactions will be received.

• if the size of DMARX buffer is 0, the data in followingWr_DMA transactions will not be received.

SPI_SLV_TX_SEG_TRANS_CLR_EN In slave segmented transfer, if the size of the DMA TX buffer is

smaller than the size of the transmitted data, (R/W)

• 1: the data in the following transactions will not be updated, i.e. the old data is transmitted

repeatedly.

• 0: the data in this transaction will not be updated. But in the following transactions,

– if new data is filled in DMA TX FIFO, new data will be transmitted.

– if no new data is filled in DMA TX FIFO, no new data will be transmitted.

SPI_RX_EOF_EN 1: In a DAM-controlled transfer, if the bit number of transferred data is equal to

(SPI_MS_DATA_BITLEN + 1), then GDMA_IN_SUC_EOF_CHn_INT_RAW will be set by hardware.

0: GDMA_IN_SUC_EOF_CHn_INT_RAW is set by SPI_TRANS_DONE_INT event in a single trans-

fer, or by an SPI_DMA_SEG_TRANS_DONE_INT event in a segmented transfer. (R/W)

SPI_DMA_RX_ENA Set this bit to enable SPI DMA controlled receive data mode. (R/W)

SPI_DMA_TX_ENA Set this bit to enable SPI DMA controlled send data mode. (R/W)

Continued on the next page...

Espressif Systems 388
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.9. SPI_DMA_CONF_REG (0x0030)

Continued from the previous page...

SPI_RX_AFIFO_RST Set this bit to reset spi_rx_afifo as shown in Figure 20-4 and in Figure 20-5.

spi_rx_afifo is used to receive data in SPI master and slave transfer. (WT)

SPI_BUF_AFIFO_RST Set this bit to reset buf_tx_afifo as shown in Figure 20-4 and in Figure 20-5.

buf_tx_afifo is used to send data out in CPU-controlled master and slave transfer. (WT)

SPI_DMA_AFIFO_RST Set this bit to reset dma_tx_afifo as shown in Figure 20-4 and in Figure 20-5.

dma_tx_afifo is used to send data out in DMA-controlled slave transfer. (WT)

Espressif Systems 389
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.10. SPI_SLAVE_REG (0x00E0)

(re
se
rve
d)

0 0 0

31 29

SP
I_U
SR
_C
ON
F

0

28

SP
I_S
OF
T_
RE
SE
T

0

27

SP
I_S
LA
VE
_M
OD
E

0

26

SP
I_D
M
A_
SE
G_
M
AG
IC
_V
AL
UE

10

25 22

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

21 12

SP
I_S
LV
_W
RB
UF
_B
ITL
EN
_E
N

0

11

SP
I_S
LV
_R
DB
UF
_B
ITL
EN
_E
N

0

10

SP
I_S
LV
_W
RD
M
A_
BI
TL
EN
_E
N

0

9

SP
I_S
LV
_R
DD
M
A_
BI
TL
EN
_E
N

0

8

(re
se
rve
d)

0 0 0 0

7 4

SP
I_R
SC
K_
DA
TA
_O
UT

0

3

SP
I_C
LK
_M
OD
E_
13

0

2

SP
I_C
LK
_M
OD
E

0

1 0

Reset

SPI_CLK_MODE SPI clock mode control bits. Can be configured in CONF state. (R/W)

• 0: SPI clock is off when CS becomes inactive.

• 1: SPI clock is delayed one cycle after CS becomes inactive.

• 2: SPI clock is delayed two cycles after CS becomes inactive.

• 3: SPI clock is always on.

SPI_CLK_MODE_13 Configure clock mode. (R/W)

• 1: support SPI clock mode 1 or 3. See Table 20-17.

• 0: support SPI clock mode 0 or 2. See Table 20-17.

SPI_RSCK_DATA_OUT Save half a cycle when TSCK is the same as RSCK. 1: output data at RSCK

rising edge. 0: output data at TSCK rising edge. (R/W)

SPI_SLV_RDDMA_BITLEN_EN If this bit is set, SPI_SLV_DATA_BITLEN is used to store the data bit

length of Rd_DMA transfer (R/W)

SPI_SLV_WRDMA_BITLEN_EN If this bit is set, SPI_SLV_DATA_BITLEN is used to store the data bit

length of Wr_DMA transfer. (R/W)

SPI_SLV_RDBUF_BITLEN_EN If this bit is set, SPI_SLV_DATA_BITLEN is used to store data bit

length of Rd_BUF transfer. (R/W)

SPI_SLV_WRBUF_BITLEN_EN If this bit is set, SPI_SLV_DATA_BITLEN is used to store data bit

length of Wr_BUF transfer. (R/W)

SPI_DMA_SEG_MAGIC_VALUE Configure the magic value of BM table in DMA-controlled config-

urable segmented transfer. (R/W)

SPI_SLAVE_MODE Set SPI work mode. 1: slave mode. 0: master mode. (R/W)

SPI_SOFT_RESET Software reset enable bit. If this bit is set, the SPI clock line, CS line, and data

line are reset. Can be configured in CONF state. (WT)

SPI_USR_CONF 1: enable the CONF state of current DMA-controlled configurable segmented trans-

fer, which means a configurable segmented transfer is started. 0: the current transfer is not a

configurable segmented transfer. (R/W)

Espressif Systems 390
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.11. SPI_SLAVE1_REG (0x00E4)

SP
I_S
LV
_L
AS
T_
AD
DR

0

31 26

SP
I_S
LV
_L
AS
T_
CO
M
M
AN
D

0

25 18

SP
I_S
LV
_D
AT
A_
BI
TL
EN

0

17 0

Reset

SPI_SLV_DATA_BITLEN Configure the transferred data bit length in SPI slave full-/half-duplex modes.

(R/W/SS)

SPI_SLV_LAST_COMMAND In slave mode, it is the value of command. (R/W/SS)

SPI_SLV_LAST_ADDR In slave mode, it is the value of address. (R/W/SS)

Register 20.12. SPI_CLOCK_REG (0x000C)

SP
I_C
LK
_E
QU
_S
YS
CL
K

1

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0

30 22

SP
I_C
LK
DI
V_
PR
E

0

21 18

SP
I_C
LK
CN
T_
N

0x3

17 12

SP
I_C
LK
CN
T_
H

0x1

11 6

SP
I_C
LK
CN
T_
L

0x3

5 0

Reset

SPI_CLKCNT_L In master mode, this field must be equal to SPI_CLKCNT_N. In slave mode, it must

be 0. Can be configured in CONF state. (R/W)

SPI_CLKCNT_H In master mode, this field is used to configure the duty cycle of SPI_CLK (high level).

It’s recommended to configure this value to floor((SPI_CLKCNT_N + 1)/2 - 1). floor() here is to

round a number down, e.g., floor(2.2) = 2. In slave mode, it must be 0. Can be configured in

CONF state. (R/W)

SPI_CLKCNT_N In master mode, this is the divider of SPI_CLK. So SPI_CLK frequency is

fapb_clk/(SPI_CLKDIV_PRE + 1)/(SPI_CLKCNT_N + 1). Can be configured in CONF state. (R/W)

SPI_CLKDIV_PRE In master mode, this is the pre-divider of SPI_CLK. Can be configured in CONF

state. (R/W)

SPI_CLK_EQU_SYSCLK In master mode, 1: SPI_CLK is equal to APB_CLK. 0: SPI_CLK is divided

from APB_CLK. Can be configured in CONF state. (R/W)

Espressif Systems 391
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.13. SPI_CLK_GATE_REG (0x00E8)

(re
se
rve
d)

0 0

31 3

SP
I_M

ST
_C
LK
_S
EL

0

2

SP
I_M

ST
_C
LK
_A
CT
IVE

0

1

SP
I_C
LK
_E
N

0

0

Reset

SPI_CLK_EN Set this bit to enable clock gate. (R/W)

SPI_MST_CLK_ACTIVE Set this bit to power on the SPI module clock. (R/W)

SPI_MST_CLK_SEL This bit is used to select SPI module clock source in master mode. 1:

PLL_F80M_CLK. 0: XTAL_CLK. (R/W)

Espressif Systems 392
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.14. SPI_DMA_INT_ENA_REG (0x0034)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

SP
I_A
PP
1_
IN
T_
EN
A

0

20

SP
I_A
PP
2_
IN
T_
EN
A

0

19

SP
I_M

ST
_T
X_
AF
IFO
_R
EM
PT
Y_
ER
R_
IN
T_
EN
A

0

18

SP
I_M

ST
_R
X_
AF
IFO
_W
FU
LL
_E
RR
_IN
T_
EN
A

0

17

SP
I_S
LV
_C
M
D_
ER
R_
IN
T_
EN
A

0

16

(re
se
rve
d)

0

15

SP
I_S
EG
_M
AG
IC
_E
RR
_IN
T_
EN
A

0

14

SP
I_D
M
A_
SE
G_
TR
AN
S_
DO
NE
_IN
T_
EN
A

0

13

SP
I_T
RA
NS
_D
ON
E_
IN
T_
EN
A

0

12

SP
I_S
LV
_W
R_
BU
F_
DO
NE
_IN
T_
EN
A

0

11

SP
I_S
LV
_R
D_
BU
F_
DO
NE
_IN
T_
EN
A

0

10

SP
I_S
LV
_W
R_
DM
A_
DO
NE
_IN
T_
EN
A

0

9

SP
I_S
LV
_R
D_
DM
A_
DO
NE
_IN
T_
EN
A

0

8

SP
I_S
LV
_C
M
DA
_IN
T_
EN
A

0

7

SP
I_S
LV
_C
M
D9
_IN
T_
EN
A

0

6

SP
I_S
LV
_C
M
D8
_IN
T_
EN
A

0

5

SP
I_S
LV
_C
M
D7
_IN
T_
EN
A

0

4

SP
I_S
LV
_E
N_
QP
I_I
NT
_E
NA

0

3

SP
I_S
LV
_E
X_
QP
I_I
NT
_E
NA

0

2

SP
I_D
M
A_
OU
TF
IFO
_E
M
PT
Y_
ER
R_
IN
T_
EN
A

0

1

SP
I_D
M
A_
IN
FIF
O_
FU
LL
_E
RR
_IN
T_
EN
A

0

0

Reset

SPI_DMA_INFIFO_FULL_ERR_INT_ENA The enable bit for SPI_DMA_INFIFO_FULL_ERR_INT in-

terrupt. (R/W)

SPI_DMA_OUTFIFO_EMPTY_ERR_INT_ENA The enable bit for SPI_DMA_OUTFIFO_EMPTY_ERR_INT

interrupt. (R/W)

SPI_SLV_EX_QPI_INT_ENA The enable bit for SPI_SLV_EX_QPI_INT interrupt. (R/W)

SPI_SLV_EN_QPI_INT_ENA The enable bit for SPI_SLV_EN_QPI_INT interrupt. (R/W)

SPI_SLV_CMD7_INT_ENA The enable bit for SPI_SLV_CMD7_INT interrupt. (R/W)

SPI_SLV_CMD8_INT_ENA The enable bit for SPI_SLV_CMD8_INT interrupt. (R/W)

SPI_SLV_CMD9_INT_ENA The enable bit for SPI_SLV_CMD9_INT interrupt. (R/W)

SPI_SLV_CMDA_INT_ENA The enable bit for SPI_SLV_CMDA_INT interrupt. (R/W)

SPI_SLV_RD_DMA_DONE_INT_ENA The enable bit for SPI_SLV_RD_DMA_DONE_INT interrupt.

(R/W)

SPI_SLV_WR_DMA_DONE_INT_ENA The enable bit for SPI_SLV_WR_DMA_DONE_INT interrupt.

(R/W)

SPI_SLV_RD_BUF_DONE_INT_ENA The enable bit for SPI_SLV_RD_BUF_DONE_INT interrupt.

(R/W)

SPI_SLV_WR_BUF_DONE_INT_ENA The enable bit for SPI_SLV_WR_BUF_DONE_INT interrupt.

(R/W)

SPI_TRANS_DONE_INT_ENA The enable bit for SPI_TRANS_DONE_INT interrupt. (R/W)

SPI_DMA_SEG_TRANS_DONE_INT_ENA The enable bit for SPI_DMA_SEG_TRANS_DONE_INT

interrupt. (R/W)

SPI_SEG_MAGIC_ERR_INT_ENA The enable bit for SPI_SEG_MAGIC_ERR_INT interrupt. (R/W)

Continued on the next page...

Espressif Systems 393
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.14. SPI_DMA_INT_ENA_REG (0x0034)

Continued from the previous page...

SPI_SLV_CMD_ERR_INT_ENA The enable bit for SPI_SLV_CMD_ERR_INT interrupt. (R/W)

SPI_MST_RX_AFIFO_WFULL_ERR_INT_ENA The enable bit for

SPI_MST_RX_AFIFO_WFULL_ERR_INT interrupt. (R/W)

SPI_MST_TX_AFIFO_REMPTY_ERR_INT_ENA The enable bit for

SPI_MST_TX_AFIFO_REMPTY_ERR_INT interrupt. (R/W)

SPI_APP2_INT_ENA The enable bit for SPI_APP2_INT interrupt. (R/W)

SPI_APP1_INT_ENA The enable bit for SPI_APP1_INT interrupt. (R/W)

Espressif Systems 394
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.15. SPI_DMA_INT_CLR_REG (0x0038)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

SP
I_A
PP
1_
IN
T_
CL
R

0

20

SP
I_A
PP
2_
IN
T_
CL
R

0

19

SP
I_M

ST
_T
X_
AF
IFO
_R
EM
PT
Y_
ER
R_
IN
T_
CL
R

0

18

SP
I_M

ST
_R
X_
AF
IFO
_W
FU
LL
_E
RR
_IN
T_
CL
R

0

17

SP
I_S
LV
_C
M
D_
ER
R_
IN
T_
CL
R

0

16

(re
se
rve
d)

0

15

SP
I_S
EG
_M
AG
IC
_E
RR
_IN
T_
CL
R

0

14

SP
I_D
M
A_
SE
G_
TR
AN
S_
DO
NE
_IN
T_
CL
R

0

13

SP
I_T
RA
NS
_D
ON
E_
IN
T_
CL
R

0

12

SP
I_S
LV
_W
R_
BU
F_
DO
NE
_IN
T_
CL
R

0

11

SP
I_S
LV
_R
D_
BU
F_
DO
NE
_IN
T_
CL
R

0

10

SP
I_S
LV
_W
R_
DM
A_
DO
NE
_IN
T_
CL
R

0

9

SP
I_S
LV
_R
D_
DM
A_
DO
NE
_IN
T_
CL
R

0

8

SP
I_S
LV
_C
M
DA
_IN
T_
CL
R

0

7

SP
I_S
LV
_C
M
D9
_IN
T_
CL
R

0

6

SP
I_S
LV
_C
M
D8
_IN
T_
CL
R

0

5

SP
I_S
LV
_C
M
D7
_IN
T_
CL
R

0

4

SP
I_S
LV
_E
N_
QP
I_I
NT
_C
LR

0

3

SP
I_S
LV
_E
X_
QP
I_I
NT
_C
LR

0

2

SP
I_D
M
A_
OU
TF
IFO
_E
M
PT
Y_
ER
R_
IN
T_
CL
R

0

1

SP
I_D
M
A_
IN
FIF
O_
FU
LL
_E
RR
_IN
T_
CL
R

0

0

Reset

SPI_DMA_INFIFO_FULL_ERR_INT_CLR The clear bit for SPI_DMA_INFIFO_FULL_ERR_INT inter-

rupt. (WT)

SPI_DMA_OUTFIFO_EMPTY_ERR_INT_CLR The clear bit for SPI_DMA_OUTFIFO_EMPTY_ERR_INT

interrupt. (WT)

SPI_SLV_EX_QPI_INT_CLR The clear bit for SPI_SLV_EX_QPI_INT interrupt. (WT)

SPI_SLV_EN_QPI_INT_CLR The clear bit for SPI_SLV_EN_QPI_INT interrupt. (WT)

SPI_SLV_CMD7_INT_CLR The clear bit for SPI_SLV_CMD7_INT interrupt. (WT)

SPI_SLV_CMD8_INT_CLR The clear bit for SPI_SLV_CMD8_INT interrupt. (WT)

SPI_SLV_CMD9_INT_CLR The clear bit for SPI_SLV_CMD9_INT interrupt. (WT)

SPI_SLV_CMDA_INT_CLR The clear bit for SPI_SLV_CMDA_INT interrupt. (WT)

SPI_SLV_RD_DMA_DONE_INT_CLR The clear bit for SPI_SLV_RD_DMA_DONE_INT interrupt. (WT)

SPI_SLV_WR_DMA_DONE_INT_CLR The clear bit for SPI_SLV_WR_DMA_DONE_INT interrupt.

(WT)

SPI_SLV_RD_BUF_DONE_INT_CLR The clear bit for SPI_SLV_RD_BUF_DONE_INT interrupt. (WT)

SPI_SLV_WR_BUF_DONE_INT_CLR The clear bit for SPI_SLV_WR_BUF_DONE_INT interrupt. (WT)

SPI_TRANS_DONE_INT_CLR The clear bit for SPI_TRANS_DONE_INT interrupt. (WT)

SPI_DMA_SEG_TRANS_DONE_INT_CLR The clear bit for SPI_DMA_SEG_TRANS_DONE_INT in-

terrupt. (WT)

SPI_SEG_MAGIC_ERR_INT_CLR The clear bit for SPI_SEG_MAGIC_ERR_INT interrupt. (WT)

Continued on the next page...

Espressif Systems 395
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.15. SPI_DMA_INT_CLR_REG (0x0038)

Continued from the previous page...

SPI_SLV_CMD_ERR_INT_CLR The clear bit for SPI_SLV_CMD_ERR_INT interrupt. (WT)

SPI_MST_RX_AFIFO_WFULL_ERR_INT_CLR The clear bit for SPI_MST_RX_AFIFO_WFULL_ERR_INT

interrupt. (WT)

SPI_MST_TX_AFIFO_REMPTY_ERR_INT_CLR The clear bit for SPI_MST_TX_AFIFO_REMPTY_ERR_INT

interrupt. (WT)

SPI_APP2_INT_CLR The clear bit for SPI_APP2_INT interrupt. (WT)

SPI_APP1_INT_CLR The clear bit for SPI_APP1_INT interrupt. (WT)

Espressif Systems 396
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.16. SPI_DMA_INT_RAW_REG (0x003C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

SP
I_A
PP
1_
IN
T_
RA
W

0

20

SP
I_A
PP
2_
IN
T_
RA
W

0

19

SP
I_M

ST
_T
X_
AF
IFO
_R
EM
PT
Y_
ER
R_
IN
T_
RA
W

0

18

SP
I_M

ST
_R
X_
AF
IFO
_W
FU
LL
_E
RR
_IN
T_
RA
W

0

17

SP
I_S
LV
_C
M
D_
ER
R_
IN
T_
RA
W

0

16

(re
se
rve
d)

0

15

SP
I_S
EG
_M
AG
IC
_E
RR
_IN
T_
RA
W

0

14

SP
I_D
M
A_
SE
G_
TR
AN
S_
DO
NE
_IN
T_
RA
W

0

13

SP
I_T
RA
NS
_D
ON
E_
IN
T_
RA
W

0

12

SP
I_S
LV
_W
R_
BU
F_
DO
NE
_IN
T_
RA
W

0

11

SP
I_S
LV
_R
D_
BU
F_
DO
NE
_IN
T_
RA
W

0

10

SP
I_S
LV
_W
R_
DM
A_
DO
NE
_IN
T_
RA
W

0

9

SP
I_S
LV
_R
D_
DM
A_
DO
NE
_IN
T_
RA
W

0

8

SP
I_S
LV
_C
M
DA
_IN
T_
RA
W

0

7

SP
I_S
LV
_C
M
D9
_IN
T_
RA
W

0

6

SP
I_S
LV
_C
M
D8
_IN
T_
RA
W

0

5

SP
I_S
LV
_C
M
D7
_IN
T_
RA
W

0

4

SP
I_S
LV
_E
N_
QP
I_I
NT
_R
AW

0

3

SP
I_S
LV
_E
X_
QP
I_I
NT
_R
AW

0

2

SP
I_D
M
A_
OU
TF
IFO
_E
M
PT
Y_
ER
R_
IN
T_
RA
W

0

1

SP
I_D
M
A_
IN
FIF
O_
FU
LL
_E
RR
_IN
T_
RA
W

0

0

Reset

SPI_DMA_INFIFO_FULL_ERR_INT_RAW The raw bit for SPI_DMA_INFIFO_FULL_ERR_INT inter-

rupt. (R/W/WTC/SS)

SPI_DMA_OUTFIFO_EMPTY_ERR_INT_RAW The raw bit for SPI_DMA_OUTFIFO_EMPTY_ERR_INT

interrupt. (R/W/WTC/SS)

SPI_SLV_EX_QPI_INT_RAW The raw bit for SPI_SLV_EX_QPI_INT interrupt. (R/W/WTC/SS)

SPI_SLV_EN_QPI_INT_RAW The raw bit for SPI_SLV_EN_QPI_INT interrupt. (R/W/WTC/SS)

SPI_SLV_CMD7_INT_RAW The raw bit for SPI_SLV_CMD7_INT interrupt. (R/W/WTC/SS)

SPI_SLV_CMD8_INT_RAW The raw bit for SPI_SLV_CMD8_INT interrupt. (R/W/WTC/SS)

SPI_SLV_CMD9_INT_RAW The raw bit for SPI_SLV_CMD9_INT interrupt. (R/W/WTC/SS)

SPI_SLV_CMDA_INT_RAW The raw bit for SPI_SLV_CMDA_INT interrupt. (R/W/WTC/SS)

SPI_SLV_RD_DMA_DONE_INT_RAW The raw bit for SPI_SLV_RD_DMA_DONE_INT interrupt.

(R/W/WTC/SS)

SPI_SLV_WR_DMA_DONE_INT_RAW The raw bit for SPI_SLV_WR_DMA_DONE_INT interrupt.

(R/W/WTC/SS)

SPI_SLV_RD_BUF_DONE_INT_RAW The raw bit for SPI_SLV_RD_BUF_DONE_INT interrupt.

(R/W/WTC/SS)

SPI_SLV_WR_BUF_DONE_INT_RAW The raw bit for SPI_SLV_WR_BUF_DONE_INT interrupt.

(R/W/WTC/SS)

SPI_TRANS_DONE_INT_RAW The raw bit for SPI_TRANS_DONE_INT interrupt. (R/W/WTC/SS)

Continued on the next page...

Espressif Systems 397
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.16. SPI_DMA_INT_RAW_REG (0x003C)

Continued from the previous page...

SPI_DMA_SEG_TRANS_DONE_INT_RAW The raw bit for SPI_DMA_SEG_TRANS_DONE_INT in-

terrupt. (R/W/WTC/SS)

SPI_SEG_MAGIC_ERR_INT_RAW The raw bit for SPI_SEG_MAGIC_ERR_INT interrupt.

(R/W/WTC/SS)

SPI_SLV_CMD_ERR_INT_RAW The raw bit for SPI_SLV_CMD_ERR_INT interrupt. (R/W/WTC/SS)

SPI_MST_RX_AFIFO_WFULL_ERR_INT_RAW The raw bit for SPI_MST_RX_AFIFO_WFULL_ERR_INT

interrupt. (R/W/WTC/SS)

SPI_MST_TX_AFIFO_REMPTY_ERR_INT_RAW The raw bit for SPI_MST_TX_AFIFO_REMPTY_ERR_INT

interrupt. (R/W/WTC/SS)

SPI_APP2_INT_RAW The raw bit for SPI_APP2_INT interrupt. The value is only controlled by the

application. (R/W/WTC)

SPI_APP1_INT_RAW The raw bit for SPI_APP1_INT interrupt. The value is only controlled by the

application. (R/W/WTC)

Espressif Systems 398
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.17. SPI_DMA_INT_ST_REG (0x0040)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

SP
I_A
PP
1_
IN
T_
ST

0

20

SP
I_A
PP
2_
IN
T_
ST

0

19

SP
I_M

ST
_T
X_
AF
IFO
_R
EM
PT
Y_
ER
R_
IN
T_
ST

0

18

SP
I_M

ST
_R
X_
AF
IFO
_W
FU
LL
_E
RR
_IN
T_
ST

0

17

SP
I_S
LV
_C
M
D_
ER
R_
IN
T_
ST

0

16

(re
se
rve
d)

0

15

SP
I_S
EG
_M
AG
IC
_E
RR
_IN
T_
ST

0

14

SP
I_D
M
A_
SE
G_
TR
AN
S_
DO
NE
_IN
T_
ST

0

13

SP
I_T
RA
NS
_D
ON
E_
IN
T_
ST

0

12

SP
I_S
LV
_W
R_
BU
F_
DO
NE
_IN
T_
ST

0

11

SP
I_S
LV
_R
D_
BU
F_
DO
NE
_IN
T_
ST

0

10

SP
I_S
LV
_W
R_
DM
A_
DO
NE
_IN
T_
ST

0

9

SP
I_S
LV
_R
D_
DM
A_
DO
NE
_IN
T_
ST

0

8

SP
I_S
LV
_C
M
DA
_IN
T_
ST

0

7

SP
I_S
LV
_C
M
D9
_IN
T_
ST

0

6

SP
I_S
LV
_C
M
D8
_IN
T_
ST

0

5

SP
I_S
LV
_C
M
D7
_IN
T_
ST

0

4

SP
I_S
LV
_E
N_
QP
I_I
NT
_S
T

0

3

SP
I_S
LV
_E
X_
QP
I_I
NT
_S
T

0

2

SP
I_D
M
A_
OU
TF
IFO
_E
M
PT
Y_
ER
R_
IN
T_
ST

0

1

SP
I_D
M
A_
IN
FIF
O_
FU
LL
_E
RR
_IN
T_
ST

0

0

Reset

SPI_DMA_INFIFO_FULL_ERR_INT_ST The status bit for SPI_DMA_INFIFO_FULL_ERR_INT inter-

rupt. (RO)

SPI_DMA_OUTFIFO_EMPTY_ERR_INT_ST The status bit for SPI_DMA_OUTFIFO_EMPTY_ERR_INT

interrupt. (RO)

SPI_SLV_EX_QPI_INT_ST The status bit for SPI_SLV_EX_QPI_INT interrupt. (RO)

SPI_SLV_EN_QPI_INT_ST The status bit for SPI_SLV_EN_QPI_INT interrupt. (RO)

SPI_SLV_CMD7_INT_ST The status bit for SPI_SLV_CMD7_INT interrupt. (RO)

SPI_SLV_CMD8_INT_ST The status bit for SPI_SLV_CMD8_INT interrupt. (RO)

SPI_SLV_CMD9_INT_ST The status bit for SPI_SLV_CMD9_INT interrupt. (RO)

SPI_SLV_CMDA_INT_ST The status bit for SPI_SLV_CMDA_INT interrupt. (RO)

SPI_SLV_RD_DMA_DONE_INT_ST The status bit for SPI_SLV_RD_DMA_DONE_INT interrupt. (RO)

SPI_SLV_WR_DMA_DONE_INT_ST The status bit for SPI_SLV_WR_DMA_DONE_INT interrupt.

(RO)

SPI_SLV_RD_BUF_DONE_INT_ST The status bit for SPI_SLV_RD_BUF_DONE_INT interrupt. (RO)

SPI_SLV_WR_BUF_DONE_INT_ST The status bit for SPI_SLV_WR_BUF_DONE_INT interrupt. (RO)

SPI_TRANS_DONE_INT_ST The status bit for SPI_TRANS_DONE_INT interrupt. (RO)

SPI_DMA_SEG_TRANS_DONE_INT_ST The status bit for SPI_DMA_SEG_TRANS_DONE_INT in-

terrupt. (RO)

SPI_SEG_MAGIC_ERR_INT_ST The status bit for SPI_SEG_MAGIC_ERR_INT interrupt. (RO)

SPI_SLV_CMD_ERR_INT_ST The status bit for SPI_SLV_CMD_ERR_INT interrupt. (RO)

Continued on the next page...

Espressif Systems 399
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.17. SPI_DMA_INT_ST_REG (0x0040)

Continued from the previous page...

SPI_MST_RX_AFIFO_WFULL_ERR_INT_ST The status bit for SPI_MST_RX_AFIFO_WFULL_ERR_INT

interrupt. (RO)

SPI_MST_TX_AFIFO_REMPTY_ERR_INT_ST The status bit for SPI_MST_TX_AFIFO_REMPTY_ERR_INT

interrupt. (RO)

SPI_APP2_INT_ST The status bit for SPI_APP2_INT interrupt. (RO)

SPI_APP1_INT_ST The status bit for SPI_APP1_INT interrupt. (RO)

Register 20.18. SPI_DMA_INT_SET_REG (0x0044)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0

31 21

SP
I_A
PP
1_
IN
T_
SE
T

0

20

SP
I_A
PP
2_
IN
T_
SE
T

0

19

SP
I_M

ST
_T
X_
AF
IFO
_R
EM
PT
Y_
ER
R_
IN
T_
SE
T

0

18

SP
I_M

ST
_R
X_
AF
IFO
_W
FU
LL
_E
RR
_IN
T_
SE
T

0

17

SP
I_S
LV
_C
M
D_
ER
R_
IN
T_
SE
T

0

16

(re
se
rve
d)

0

15

SP
I_S
EG
_M
AG
IC
_E
RR
_IN
T_
SE
T

0

14

SP
I_D
M
A_
SE
G_
TR
AN
S_
DO
NE
_IN
T_
SE
T

0

13

SP
I_T
RA
NS
_D
ON
E_
IN
T_
SE
T

0

12

SP
I_S
LV
_W
R_
BU
F_
DO
NE
_IN
T_
SE
T

0

11

SP
I_S
LV
_R
D_
BU
F_
DO
NE
_IN
T_
SE
T

0

10

SP
I_S
LV
_W
R_
DM
A_
DO
NE
_IN
T_
SE
T

0

9

SP
I_S
LV
_R
D_
DM
A_
DO
NE
_IN
T_
SE
T

0

8

SP
I_S
LV
_C
M
DA
_IN
T_
SE
T

0

7

SP
I_S
LV
_C
M
D9
_IN
T_
SE
T

0

6

SP
I_S
LV
_C
M
D8
_IN
T_
SE
T

0

5

SP
I_S
LV
_C
M
D7
_IN
T_
SE
T

0

4

SP
I_S
LV
_E
N_
QP
I_I
NT
_S
ET

0

3

SP
I_S
LV
_E
X_
QP
I_I
NT
_S
ET

0

2

SP
I_D
M
A_
OU
TF
IFO
_E
M
PT
Y_
ER
R_
IN
T_
SE
T

0

1

SP
I_D
M
A_
IN
FIF
O_
FU
LL
_E
RR
_IN
T_
SE
T

0

0

Reset

SPI_DMA_INFIFO_FULL_ERR_INT_SET The software set bit for SPI_DMA_INFIFO_FULL_ERR_INT

interrupt. (WT)

SPI_DMA_OUTFIFO_EMPTY_ERR_INT_SET The software set bit for

SPI_DMA_OUTFIFO_EMPTY_ERR_INT interrupt. (WT)

SPI_SLV_EX_QPI_INT_SET The software set bit for SPI_SLV_EX_QPI_INT interrupt. (WT)

SPI_SLV_EN_QPI_INT_SET The software set bit for SPI_SLV_EN_QPI_INT interrupt. (WT)

SPI_SLV_CMD7_INT_SET The software set bit for SPI_SLV_CMD7_INT interrupt. (WT)

SPI_SLV_CMD8_INT_SET The software set bit for SPI_SLV_CMD8_INT interrupt. (WT)

SPI_SLV_CMD9_INT_SET The software set bit for SPI_SLV_CMD9_INT interrupt. (WT)

SPI_SLV_CMDA_INT_SET The software set bit for SPI_SLV_CMDA_INT interrupt. (WT)

Continued on the next page...

Espressif Systems 400
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.18. SPI_DMA_INT_SET_REG (0x0044)

Continued from the previous page...

SPI_SLV_RD_DMA_DONE_INT_SET The software set bit for SPI_SLV_RD_DMA_DONE_INT inter-

rupt. (WT)

SPI_SLV_WR_DMA_DONE_INT_SET The software set bit for SPI_SLV_WR_DMA_DONE_INT inter-

rupt. (WT)

SPI_SLV_RD_BUF_DONE_INT_SET The software set bit for SPI_SLV_RD_BUF_DONE_INT inter-

rupt. (WT)

SPI_SLV_WR_BUF_DONE_INT_SET The software set bit for SPI_SLV_WR_BUF_DONE_INT inter-

rupt. (WT)

SPI_TRANS_DONE_INT_SET The software set bit for SPI_TRANS_DONE_INT interrupt. (WT)

SPI_DMA_SEG_TRANS_DONE_INT_SET The software set bit for

SPI_DMA_SEG_TRANS_DONE_INT interrupt. (WT)

SPI_SEG_MAGIC_ERR_INT_SET The software set bit for SPI_SEG_MAGIC_ERR_INT interrupt.

(WT)

SPI_SLV_CMD_ERR_INT_SET The software set bit for SPI_SLV_CMD_ERR_INT interrupt. (WT)

SPI_MST_RX_AFIFO_WFULL_ERR_INT_SET The software set bit for

SPI_MST_RX_AFIFO_WFULL_ERR_INT interrupt. (WT)

SPI_MST_TX_AFIFO_REMPTY_ERR_INT_SET The software set bit for

SPI_MST_TX_AFIFO_REMPTY_ERR_INT interrupt. (WT)

SPI_APP2_INT_SET The software set bit for SPI_APP2_INT interrupt. (WT)

SPI_APP1_INT_SET The software set bit for SPI_APP1_INT interrupt. (WT)

Register 20.19. SPI_W0_REG (0x0098)

SP
I_B
UF
0

0

31 0

Reset

SPI_BUF0 32-bit data buffer 0. (R/W/SS)

Espressif Systems 401
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.20. SPI_W1_REG (0x009C)

SP
I_B
UF
1

0

31 0

Reset

SPI_BUF1 32-bit data buffer 1. (R/W/SS)

Register 20.21. SPI_W2_REG (0x00A0)

SP
I_B
UF
2

0

31 0

Reset

SPI_BUF2 32-bit data buffer 2. (R/W/SS)

Register 20.22. SPI_W3_REG (0x00A4)

SP
I_B
UF
3

0

31 0

Reset

SPI_BUF3 32-bit data buffer 3. (R/W/SS)

Register 20.23. SPI_W4_REG (0x00A8)

SP
I_B
UF
4

0

31 0

Reset

SPI_BUF4 32-bit data buffer 4. (R/W/SS)

Espressif Systems 402
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.24. SPI_W5_REG (0x00AC)

SP
I_B
UF
5

0

31 0

Reset

SPI_BUF5 32-bit data buffer 5. (R/W/SS)

Register 20.25. SPI_W6_REG (0x00B0)

SP
I_B
UF
6

0

31 0

Reset

SPI_BUF6 32-bit data buffer 6. (R/W/SS)

Register 20.26. SPI_W7_REG (0x00B4)

SP
I_B
UF
7

0

31 0

Reset

SPI_BUF7 32-bit data buffer 7. (R/W/SS)

Register 20.27. SPI_W8_REG (0x00B8)

SP
I_B
UF
8

0

31 0

Reset

SPI_BUF8 32-bit data buffer 8. (R/W/SS)

Espressif Systems 403
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.28. SPI_W9_REG (0x00BC)

SP
I_B
UF
9

0

31 0

Reset

SPI_BUF9 32-bit data buffer 9. (R/W/SS)

Register 20.29. SPI_W10_REG (0x00C0)

SP
I_B
UF
10

0

31 0

Reset

SPI_BUF10 32-bit data buffer 10. (R/W/SS)

Register 20.30. SPI_W11_REG (0x00C4)

SP
I_B
UF
11

0

31 0

Reset

SPI_BUF11 32-bit data buffer 11. (R/W/SS)

Register 20.31. SPI_W12_REG (0x00C8)

SP
I_B
UF
12

0

31 0

Reset

SPI_BUF12 32-bit data buffer 12. (R/W/SS)

Espressif Systems 404
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

20 SPI Controller (SPI) GoBack

Register 20.32. SPI_W13_REG (0x00CC)

SP
I_B
UF
13

0

31 0

Reset

SPI_BUF13 32-bit data buffer 13. (R/W/SS)

Register 20.33. SPI_W14_REG (0x00D0)

SP
I_B
UF
14

0

31 0

Reset

SPI_BUF14 32-bit data buffer 14. (R/W/SS)

Register 20.34. SPI_W15_REG (0x00D4)

SP
I_B
UF
15

0

31 0

Reset

SPI_BUF15 32-bit data buffer 15. (R/W/SS)

Register 20.35. SPI_DATE_REG (0x00F0)

(re
se
rve
d)

0 0 0 0

31 28

SP
I_D
AT
E

0x2106070

27 0

Reset

SPI_DATE Version control register. (R/W)

Espressif Systems 405
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21 I2C Master Controller (I2C)

The I2C (Inter-Integrated Circuit) bus allows ESP8684 to communicate with multiple external devices. These

external devices can share one bus.

ESP8684 provides one I2C controller operating in master mode.

21.1 Overview

I2C is a two-wire bus, consisting of a serial data line (SDA) and a serial clock line (SCL). Both SDA and SCL lines

are open-drain. The I2C bus can be connected to a single or multiple master devices and a single or multiple

slave devices. However, only one master device can access a slave at a time via the bus.

The master initiates communication by generating a START condition: pulling the SDA line low while SCL is high,

and sending nine clock pulses via SCL. The first eight pulses are used to transmit a 7-bit address followed by a

read/write (R/W) bit. If the address of an I2C slave matches the 7-bit address transmitted, this matching slave

can respond by pulling SDA low on the ninth clock pulse. The master can send data to the slave according to the

R/W bit. Whether to terminate the data transfer or not is determined by the logic level of the acknowledge (ACK)

bit. During data transfer, SDA changes only when SCL is low. Once finishing communication, the master sends a

STOP condition: pulling SDA up while SCL is high. If a master both reads and writes data in one transfer, then it

should send a RSTART condition, a slave address and a R/W bit before changing its operation. The RSTART

condition is used to change the transfer direction and the mode of the devices (master mode or slave

mode).

21.2 Features

The I2C master controller has the following features:

• Master mode only

• Communication between multiple masters

• Standard mode (100 Kbit/s)

• Fast mode (400 Kbit/s)

• 7-bit and 10-bit slave addressing

• Continuous data transfer achieved by pulling SCL low

• Programmable digital noise filtering

• Double addressing mode, which uses slave address and slave memory or register address

Espressif Systems 406
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.3 I2C Architecture

SCL_FSM

SCL_MAIN_FSM

DATA_Shifter

SCL

SDA

SDA_Filter

Start_Detect

0

1

I2C_SCL_FILTER_EN

SDA1

0

I2C_SDA_FILTER_EN

I2C_SDA_FILTER_THRES

I2C_SCL_FILTER_THRES
I2C_SAMPLE_SCL_LEVEL

I2C_RX_LSB_FIRST
I2C_TX_LSB_FIRST

SCL_LOW_PERIOD
SCL_HIGH_PERIOD
SCL_WAIT_HIGH_PERIOD

TX RAM

16x8bits

rdata/
wdata

APB BUS

RX RAM

16x8bits

SCL_Filter

APB_CLK domain I2C_SCLK domain

Stop_Detect

ack_deal

cmd0

cmd1

...

cmd7

CMD_Controller

cmd_rd
cmd_done

cmd_content

I2C_TRANS_START

APB_CLK domain

I2C_SCLK domain

Figure 21­1. I2C Master Architecture

Figure 21-1 shows the architecture of an I2C master. The I2C master controller has the following main

parts:

• transmit and receive memory (TX/RX RAM)

• command controller (CMD_Controller)

• SCL clock controller (SCL_FSM)

• SDA data controller (SCL_MAIN_FSM)

• serial/parallel data converter (DATA_Shifter)

• filter for SCL (SCL_Filter)

• filter for SDA (SDA_Filter)

• ACK bit controller (ACK_deal)

Besides, the I2C master controller also has a clock module which generates I2C clocks, and a synchronization

module which synchronizes the APB bus and the I2C master controller.

The clock module is used to select clock sources, turn on and off clocks, and divide clocks. SCL_Filter and

SDA_Filter remove noises on SCL input signals and SDA input signals respectively. The synchronization module

synchronizes signal transfer between different clock domains.

Figure 21-2 and Figure 21-3 are the timing diagram and corresponding parameters of the I2C protocol.

SCL_FSM generates the SCL clock timing sequence conforming to the I2C protocol.

Espressif Systems 407
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

SCL_MAIN_FSM controls the execution of I2C commands and the sequence of the SDA line. Also, it controls the

ACK_deal module to generate ACK bit or detect the level of ACK bit on SDA line. CMD_Controller is used for an

I2C master to generate (R)START, STOP, WRITE, READ and END commands. TX RAM and RX RAM store data

to be transmitted and data received respectively. DATA_Shifter shifts data between serial and parallel form.

Figure 21­2. I2C Protocol Timing (Cited from Fig. 31 in The I2C­bus specification Version 2.1)

Figure 21­3. I2C Timing Parameters (Cited from Table 5 in The I2C­bus specification Version 2.1)

21.4 Functional Description

Note that operations may differ between the I2C master controller in ESP8684 and other masters or slaves on

the bus. Please refer to datasheets of individual I2C devices for specific information.

21.4.1 Clock Configuration

Registers, TX RAM, and RX RAM are configured and accessed in the APB_CLK clock domain. The main logic of

the I2C master controller, including SCL_FSM, SCL_MAIN_FSM, SCL_FILTER, SDA_FILTER, and

Espressif Systems 408
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.csd.uoc.gr/~hy428/reading/i2c_spec.pdf
https://www.csd.uoc.gr/~hy428/reading/i2c_spec.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

DATA_SHIFTER, are in the I2C_SCLK clock domain.

You can choose the clock source for I2C_SCLK from XTAL_CLK or FOSC_CLK via I2C_SCLK_SEL. When

I2C_SCLK_SEL is cleared, the clock source is XTAL_CLK. When I2C_SCLK_SEL is set, the clock source is

FOSC_CLK. The clock source is enabled by configuring I2C_SCLK_ACTIVE as high level, which passes through

a fractional divider to generate I2C_SCLK according to the following equation:

Divisor = I2C_SCLK_DIV _NUM + 1 +
I2C_SCLK_DIV _A
I2C_SCLK_DIV _B

The frequency of XTAL_CLK is 40 MHz, while the frequency of FOSC_CLK is 17.5 MHz. Limited by timing

parameters, the derived clock I2C_SCLK should operate at a frequency 20 timers larger than SCL’s

frequency.

21.4.2 SCL and SDA Noise Filtering

SCL_Filter and SDA_Filter modules are identical and are used to filter signal noises on SCL and SDA, respectively.

These filters can be enabled or disabled by configuring I2C_SCL_FILTER_EN and I2C_SDA_FILTER_EN.

Take SCL_Filter as an example. When enabled, SCL_Filter samples input signals on the SCL line continuously.

These input signals are valid only if they remain unchanged for consecutive I2C_SCL_FILTER_THRES I2C_SCLK

clock cycles. Given that only valid input signals can pass through the filter, SCL_Filter can remove glitches whose

pulse width is shorter than I2C_SCL_FILTER_THRES I2C_SCLK clock cycles, while SDA_Filter can remove

glitches whose pulse width is shorter than I2C_SDA_FILTER_THRES I2C_SCLK clock cycles.

21.4.3 Generating SCL Pulses in Idle State

Usually when the I2C bus is idle, the SCL line is held high. The I2C master controller in ESP8684 can be

programmed to generate SCL pulses in idle state. If the I2C_SCL_RST_SLV_EN bit is set, hardware will send

I2C_SCL_RST_SLV_NUM SCL pulses. When software reads 0 in I2C_SCL_RST_SLV_EN (this bit is cleared

automatically by hardware), set I2C_CONF_UPGATE to stop this function.

21.4.4 Synchronization

I2C registers are configured in APB_CLK domain, whereas the I2C master controller is configured in

asynchronous I2C_SCLK domain. Therefore, before being used by the I2C master controller, register values

should be synchronized by first writing configuration registers and then writing 1 to I2C_CONF_UPGATE.

Registers that need synchronization are listed in Table 21-1.

Table 21­1. I2C Registers that Need Synchronization

Register Parameter Address

I2C_CTR_REG I2C_SLV_TX_AUTO_START_EN 0x0004

I2C_SDA_FORCE_OUT

I2C_SCL_FORCE_OUT

I2C_SAMPLE_SCL_LEVEL

I2C_RX_FULL_ACK_LEVEL

I2C_MS_MODE

I2C_TX_LSB_FIRST

I2C_RX_LSB_FIRST

I2C_ARBITRATION_EN

Espressif Systems 409
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

I2C_TO_REG I2C_TIME_OUT_EN 0x000C

I2C_TIME_OUT_VALUE

I2C_SCL_SP_CONF_REG I2C_SDA_PD_EN 0x0080

I2C_SCL_PD_EN

I2C_SCL_RST_SLV_NUM

I2C_SCL_RST_SLV_EN

I2C_SCL_LOW_PERIOD_REG I2C_SCL_LOW_PERIOD 0x0000

I2C_SCL_HIGH_PERIOD_REG I2C_WAIT_HIGH_PERIOD 0x0038

I2C_HIGH_PERIOD

I2C_SDA_HOLD_REG I2C_SDA_HOLD_TIME 0x0030

I2C_SDA_SAMPLE_REG I2C_SDA_SAMPLE_TIME 0x0034

I2C_SCL_START_HOLD_REG I2C_SCL_START_HOLD_TIME 0x0040

I2C_SCL_RSTART_SETUP_REG I2C_SCL_RSTART_SETUP_TIME 0x0044

I2C_SCL_STOP_HOLD_REG I2C_SCL_STOP_HOLD_TIME 0x0048

I2C_SCL_STOP_SETUP_REG I2C_SCL_STOP_SETUP_TIME 0x004C

I2C_SCL_ST_TIME_OUT_REG I2C_SCL_ST_TO_I2C 0x0078

I2C_SCL_MAIN_ST_TIME_OUT_REG I2C_SCL_MAIN_ST_TO_I2C 0x007C

I2C_FILTER_CFG_REG I2C_SCL_FILTER_EN 0x0050

I2C_SCL_FILTER_THRES

I2C_SDA_FILTER_EN

I2C_SDA_FILTER_THRES

21.4.5 Open­Drain Output

SCL and SDA output drivers must be configured as open drain. There are two ways to achieve this:

1. Set I2C_SCL_FORCE_OUT and I2C_SDA_FORCE_OUT, and configure GPIO_PINn_PAD_DRIVER for

corresponding SCL and SDA pads as open-drain.

2. Clear I2C_SCL_FORCE_OUT and I2C_SDA_FORCE_OUT.

Because these lines are configured as open-drain, the low-to-high transition time of each line is longer,

determined together by the pull-up resistor and the line capacitance. The output duty cycle of I2C is limited by

the SDA and SCL line’s pull-up speed, mainly SCL’s speed.

In addition, when I2C_SCL_FORCE_OUT and I2C_SCL_PD_EN are set to 1, SCL can be forced low; when

I2C_SDA_FORCE_OUT and I2C_SDA_PD_EN are set to 1, SDA can be forced low.

Espressif Systems 410
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.4.6 Timing Parameter Configuration

Figure 21­4. I2C Timing Diagram

Figure 21-4 shows the timing diagram of an I2C master. This figure also specifies registers used to configure the

START bit, STOP bit, data hold time, data sample time, waiting time on the rising SCL edge, etc. Timing

parameters are calculated as follows in I2C_SCLK clock cycles:

1. tLOW = (I2C_SCL_LOW_PERIOD + 1) · TI2C_SCLK

2. tHIGH = (I2C_SCL_HIGH_PERIOD + 1) · TI2C_SCLK

3. tSU :STA = (I2C_SCL_RSTART_SETUP_TIME + 1) · TI2C_SCLK

4. tHD:STA = (I2C_SCL_START_HOLD_TIME + 1) · TI2C_SCLK

5. tr = (I2C_SCL_WAIT_HIGH_PERIOD + 1) · TI2C_SCLK

6. tSU :STO = (I2C_SCL_STOP_SETUP_TIME + 1) · TI2C_SCLK

7. tBUF = (I2C_SCL_STOP_HOLD_TIME + 1) · TI2C_SCLK

8. tHD:DAT = (I2C_SDA_HOLD_TIME + 1) · TI2C_SCLK

9. tSU :DAT = (I2C_SCL_LOW_PERIOD − I2C_SDA_HOLD_TIME) · TI2C_SCLK

Timing registers are:

1. I2C_SCL_START_HOLD_TIME: Specifies the interval between pulling SDA low and pulling SCL low when

the master generates a START condition. This interval is (I2C_SCL_START_HOLD_TIME +1) in I2C_SCLK

cycles.

2. I2C_SCL_LOW_PERIOD: Specifies the low period of SCL. This period lasts (I2C_SCL_LOW_PERIOD + 1)

in I2C_SCLK cycles. However, it could be extended when SCL is pulled low by peripheral devices or by an

END command executed by the I2C master controller, or when the clock is stretched.

3. I2C_SCL_WAIT_HIGH_PERIOD: Specifies time for SCL to go high in I2C_SCLK cycles. Please make sure

that SCL could be pulled high within this time period. Otherwise, the high period of SCL may be incorrect.

4. I2C_SCL_HIGH_PERIOD: Specifies the high period of SCL in I2C_SCLK cycles. When SCL goes high

within (I2C_SCL_WAIT_HIGH_PERIOD + 1) in I2C_SCLK cycles, its frequency is:

fscl =
fI2C_SCLK

I2C_SCL_LOW_PERIOD + I2C_SCL_HIGH_PERIOD + I2C_SCL_WAIT_HIGH_PERIOD+3

Espressif Systems 411
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

5. I2C_SDA_SAMPLE_TIME: Specifies the interval between the rising edge of SCL and the level sampling

time of SDA. It is advised to set a value in the middle of SCL’s high period, so as to correctly sample the

level of SCL.

6. I2C_SDA_HOLD_TIME: Specifies the interval between changing the SDA output level and the falling edge

of SCL.

Timing parameters limits corresponding register configuration.

1. fI2C_SCLK

fSCL
> 20

2. 3× fI2C_SCLK ≤ (I2C_SDA_HOLD_TIME − 4)× fAPB_CLK

3. I2C_SDA_HOLD_TIME + I2C_SCL_START_HOLD_TIME > SDA_FILTER_THRES + 3

4. I2C_SCL_WAIT_HIGH_PERIOD < I2C_SDA_SAMPLE_TIME < I2C_SCL_HIGH_PERIOD

5. I2C_SDA_SAMPLE_TIME < I2C_SCL_WAIT_HIGH_PERIOD + I2C_SCL_START_HOLD_TIME +

I2C_SCL_RSTART_SETUP_TIME

21.4.7 Timeout Control

The I2C master controller has three types of timeout control, namely timeout control for SCL_FSM, for

SCL_MAIN_FSM, and for the SCL line. The first two are always enabled, while enabling the third is

configurable.

When SCL_FSM remains unchanged for more than 2I2C_SCL_ST _TO_I2C clock cycles, an I2C_SCL_ST_TO_INT

interrupt is triggered, and then SCL_FSM goes to idle state. The value of I2C_SCL_ST_TO_I2C should be less

than or equal to 22, which means SCL_FSM could remain unchanged for 222 I2C_SCLK clock cycles at most

before the interrupt is generated.

When SCL_MAIN_FSM remains unchanged for more than 2I2C_SCL_MAIN_ST _TO_I2C clock cycles, an

I2C_SCL_MAIN_ST_TO_INT interrupt is triggered, and then SCL_MAIN_FSM goes to idle state. The value of

I2C_SCL_MAIN_ST_TO_I2C should be less than or equal to 22, which means SCL_MAIN_FSM could remain

unchanged for 222 I2C_SCLK clock cycles at most before the interrupt is generated.

Timeout control for SCL is enabled by setting I2C_TIME_OUT_EN. When the level of SCL remains unchanged for

more than I2C_TIME_OUT_VALUE clock cycles, an I2C_TIME_OUT_INT interrupt is triggered, and then the I2C

bus goes to idle state.

21.4.8 Command Configuration

The CMD_Controller of the I2C master reads commands from 8 sequential command registers and controls

SCL_FSM and SCL_MAIN_FSM accordingly.

Figure 21­5. Structure of I2C Command Registers

Espressif Systems 412
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Figure 21-5 illustrates the structure of command registers. Fields of command registers are:

1. CMD_DONE: Indicates that a command has been executed. After each command has been executed, the

CMD_DONE bit in the corresponding command register is set to 1 by hardware. By reading this bit,

software can tell if the command has been executed. When writing new commands, this bit must be

cleared by software.

2. op_code: Indicates the command. The I2C master controller supports five commands:

• RSTART: op_code = 6. The I2C master controller sends a START bit or a RSTART bit defined by the

I2C protocol.

• WRITE: op_code = 1. The I2C master controller sends a slave address, a register address (only in

double addressing mode) and data to the slave.

• READ: op_code = 3. The I2C master controller reads data from the slave.

• STOP: op_code = 2. The I2C master controller sends a STOP bit defined by the I2C protocol. This

code also indicates that the command sequence has been executed, and the CMD_Controller stops

reading commands. After restarted by software, the CMD_Controller resumes reading commands

from command register 0.

• END: op_code = 4. The I2C master controller pulls the SCL line low and suspends I2C

communication. This code also indicates that the command sequence has completed, and the

CMD_Controller stops executing commands. Once software refreshes data in command registers and

the RAM, the CMD_Controller can be restarted to execute commands from command register 0 again.

3. ack_value: Used to configure the level of the ACK bit sent by the I2C master controller during a read

operation. This bit is ignored in RSTART, STOP, END and WRITE conditions.

4. ack_exp: Used to configure the level of the ACK bit expected by the I2C master controller during a write

operation. This bit is ignored during RSTART, STOP, END and READ conditions.

5. ack_check_en: Used to enable the I2C master controller during a write operation to check whether the

ACK level sent by the slave matches ack_exp in the command. If this bit is set and the level received does

not match ack_exp in the WRITE command, the master will generate an I2C_NACK_INT interrupt and a

STOP condition for data transfer. If this bit is cleared, the controller will not check the ACK level sent by the

slave. This bit is ignored during RSTART, STOP, END and READ conditions.

6. byte_num: Specifies the length of data (in bytes) to be read or written. Can range from 1 to 255 bytes. This

bit is ignored during RSTART, STOP and END conditions.

Each command sequence is executed starting from command register 0 and terminated by a STOP or an END.

Therefore, there must be a STOP or an END command in one command sequence.

A complete data transfer on the I2C bus should be initiated by a START and terminated by a STOP. The transfer

process may be completed using multiple sequences, each one separated by an END command. Each

sequence may differ in the direction of data transfer, clock frequency, slave addresses, data length, etc. This

allows efficient use of available peripheral RAM and also achieves more flexible I2C communication.

21.4.9 TX/RX RAM Data Storage

Both TX RAM and RX RAM are 16 × 8 bits, and can be accessed in FIFO or non-FIFO mode. If

I2C_NONFIFO_EN bit is cleared, both RAMs are accessed in FIFO mode; if I2C_NONFIFO_EN bit is set, both

Espressif Systems 413
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

RAMs are accessed in non-FIFO mode.

TX RAM stores data that the I2C master controller needs to send. During communication, when the I2C master

controller needs to send data (except acknowledgement bits), it reads data from TX RAM and sends them

sequentially via SDA. All data must be stored in TX RAM in the order they will be sent to slaves. The data stored

in TX RAM include slave addresses, read/write bits, register addresses (only in double addressing mode) and

data to be sent.

TX RAM can be read and written by the CPU. The CPU writes to TX RAM either in FIFO mode or in non-FIFO

mode (direct address). In FIFO mode, the CPU writes to TX RAM via the fixed address I2C_DATA_REG, with

addresses for writing in TX RAM incremented automatically by hardware. In non-FIFO mode, the CPU accesses

TX RAM directly via address fields (I2C Base Address + 0x100) ~(I2C Base Address + 0x17C). Each byte in TX

RAM occupies an entire word in the address space. Therefore, the address of the first byte is (I2C Base Address

+ 0x100), the second byte is (I2C Base Address + 0x104), the third byte is (I2C Base Address + 0x108), and so

on. The CPU can only read TX RAM via direct addresses. Addresses for reading TX RAM are the same with

addresses for writing TX RAM.

RX RAM stores data the I2C master controller receives during communication. Values of RX RAM can be read by

software after I2C communication completes.

RX RAM can only be read by the CPU. The CPU reads RX RAM either in FIFO mode or in non-FIFO mode (direct

address). In FIFO mode, the CPU reads RX RAM via the fixed address I2C_DATA_REG, with addresses for

reading RX RAM incremented automatically by hardware. In non-FIFO mode, the CPU accesses TX RAM directly

via address fields (I2C Base Address + 0x180) ~(I2C Base Address + 0x1FC). Each byte in RX RAM occupies an

entire word in the address space. Therefore, the address of the first byte is I2C Base Address + 0x180, the

second byte is I2C Base Address + 0x184, the third byte is I2C Base Address + 0x188 and so on.

In FIFO mode, TX RAM of a master may wrap around to send data larger than the FIFO depth (for ESP8684 the

depth is 16 bytes). Set I2C_FIFO_PRT_EN. If the size of data to be sent is smaller than

I2C_TXFIFO_WM_THRHD, an I2C_TXFIFO_WM_INT interrupt is generated. After receiving the interrupt, software

continues writing to I2C_DATA_REG. Please ensure that software writes to or refreshes TX RAM before the

master sends data, otherwise it may result in unpredictable consequences.

In FIFO mode, RX RAM of a slave may also wrap around to receive data larger than the FIFO depth (for ESP8684

the depth is 16 bytes). Set I2C_FIFO_PRT_EN and clear I2C_RX_FULL_ACK_LEVEL. If data already received (to

be overwritten) is larger than I2C_RXFIFO_WM_THRHD, an I2C_RXFIFO_WM_INT interrupt is generated. After

receiving the interrupt, software continues reading from I2C_DATA_REG.

21.4.10 Data Conversion

DATA_Shifter is used for serial/parallel conversion, converting byte data in TX RAM to an outgoing serial bitstream

or an incoming serial bitstream to byte data in RX RAM. I2C_RX_LSB_FIRST and I2C_TX_LSB_FIRST can be

used to select LSB- or MSB-first storage and transmission of data.

21.4.11 Addressing Mode

Besides 7-bit addressing, the ESP8684 I2C also supports 10-bit addressing and double addressing. 10-bit

addressing can be mixed with 7-bit addressing.

Define the slave address as SLV_ADDR. In 7-bit addressing mode, the slave address is SLV_ADDR[6:0]; in 10-bit

addressing mode, the slave address is SLV_ADDR[9:0].

Espressif Systems 414
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

In 7-bit addressing mode, the master only needs to send one byte of address, which comprises SLV_ADDR[6:0]

and a R/W bit. In 7-bit addressing mode, there is a special case called general call addressing (broadcast).

When the master sends the general call address (0x00) and the R/W bit is 0, slaves that support general call

addressing respond to the master regardless of their own address.

In 10-bit addressing mode, the master needs to send two bytes of address. The first byte is

slave_addr_first_7bits followed by a R/W bit, and slave_addr_first_7bits should be configured as (0x78 |

SLV_ADDR[9:8]). The second byte is slave_addr_second_byte, which should be configured as SLV_ADDR[7:0].

Since a 10-bit slave address has one more byte than a 7-bit address, byte_num of the WRITE command and the

number of bytes in the RAM increase by one.

Some I2C slaves support double addressing, where the first address is the address of an I2C slave, and the

second one is the slave’s memory address. ESP8684 I2C also supports double addressing.

21.4.12 Starting of the I2C Master Controller

To start the I2C master controller, after configuring the controller to master mode (I2C_MS_MODE) and command

registers, write 1 to I2C_TRANS_START in order that the master starts to parse and execute command

sequences. The master always executes a command sequence starting from command register 0 to a STOP or

an END at the end. To execute another command sequence starting from command register 0, refresh

commands by writing 1 again to I2C_TRANS_START.

21.5 Programming Example

This section provides programming examples for typical communication scenarios. ESP8684 has one I2C

master controller. For the convenience of description, the I2C master in subsequent figures is ESP8684’s I2C

master controller, and the I2C slave are controllers compliant with The I2C-bus specification Version 2.1 and have

corresponding functions. I2C master is referred to as I2Cmaster, and I2C slave is referred to as I2Cslave.

21.5.1 I2Cmaster Writes to I2Cslave with a 7­bit Address in One Command Sequence

21.5.1.1 Introduction

Figure 21­6. I2Cmaster Writing to I2Cslave with a 7­bit Address

Espressif Systems 415
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.csd.uoc.gr/~hy428/reading/i2c_spec.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Figure 21-6 shows how I2Cmaster writes N bytes of data to I2Cslave’s registers and RAM using 7-bit addressing.

As shown in figure 21-6 , the first byte in the RAM of I2Cmaster is a 7-bit I2Cslave address followed by a R/W bit.

When the R/W bit is 0, it indicates a WRITE operation. The remaining bytes are used to store data ready for

transfer. The cmd box contains related command sequences.

After the command sequence is configured and data in RAM is ready, I2Cmaster enables the controller and initiates

data transfer by setting the I2C_TRANS_START bit. The controller has four steps to take:

1. Wait for SCL to go high, to avoid SCL being used by other masters or slaves.

2. Execute a RSTART command and send a START bit.

3. Execute a WRITE command by taking N+1 bytes from the RAM in order and send them to I2Cslave in the

same order. The first byte is the address of I2Cslave.

4. Send a STOP. Once the I2Cmaster transfers a STOP bit, an I2C_TRANS_COMPLETE_INT interrupt is

generated.

21.5.1.2 Configuration Example

1. Configure the timing parameter registers of I2Cmaster and I2Cslave according to Section 21.4.6. Adjust the

timing of I2Cslave according to its manual.

2. Set I2C_MS_MODE to 1.

3. Write 1 to I2C_CONF_UPGATE to synchronize registers.

4. Configure command registers of I2Cmaster.

Command register op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 RSTART — — — —

I2C_COMMAND1 WRITE ack_value ack_exp 1 N+1

I2C_COMMAND2 STOP — — — —

5. Write I2Cslave address and data to be sent to TX RAM of I2Cmaster in either FIFO mode or non-FIFO mode

according to Section 21.4.9.

6. Set the address of I2Cslave via I2C_SLAVE_ADDR[7:0].

7. Write 1 to I2C_TRANS_START to start transfer, and enable I2Cslave.

8. I2Cslave compares the slave address sent by I2Cmaster with its own address. When ack_check_en in

I2Cmaster’s WRITE command is 1, I2Cmaster checks ACK value each time it sends a byte. When

ack_check_en is 0, I2Cmaster does not check ACK value and take I2Cslave as a matching slave by default.

• Match: If the received ACK value matches ack_exp (the expected ACK value), I2Cmaster continues

data transfer.

• Not match: If the received ACK value does not match ack_exp, I2Cmaster generates an I2C_NACK_INT

interrupt and stops data transfer.

9. I2Cmaster sends data, and checks ACK value or not according to ack_check_en.

10. If data to be sent (N) is larger than the depth of TX FIFO, TX RAM of I2Cmaster may wrap around in FIFO

mode. For details, please refer to Section 21.4.9.

Espressif Systems 416
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

11. After data transfer completes, I2Cmaster executes the STOP command, and generates an

I2C_TRANS_COMPLETE_INT interrupt.

21.5.2 I2Cmaster Writes to I2Cslave with a 10­bit Address in One Command Sequence

21.5.2.1 Introduction

Figure 21­7. I2Cmaster Writing to a Slave with a 10­bit Address

Figure 21-7 shows how I2Cmaster writes N bytes of data using 10-bit addressing to an I2C slave. The

configuration and transfer process is similar to what is described in 21.5.1, except that a 10-bit I2Cslave address is

formed from two bytes. Since a 10-bit I2Cslave address has one more byte than a 7-bit I2Cslave address,

byte_num and length of data in TX RAM increase by 1 accordingly.

21.5.2.2 Configuration Example

1. Set I2C_MS_MODE to 1.

2. Write 1 to I2C_CONF_UPGATE to synchronize registers.

3. Configure command registers of I2Cmaster.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 RSTART — — — —

I2C_COMMAND1 WRITE ack_value ack_exp 1 N+2

I2C_COMMAND2 STOP — — — —

4. Set the address of I2Cslave via I2C_SLAVE_ADDR[9:0].

5. Write I2Cslave address and data to be sent to TX RAM of I2Cmaster. The first byte of I2Cslave address

comprises ((0x78 | I2C_SLAVE_ADDR[9:8])«1) and a R/W bit. The second byte of I2Cslave address is

I2C_SLAVE_ADDR[7:0]. These two bytes are followed by data to be sent in FIFO or non-FIFO mode.

6. Write 1 to I2C_CONF_UPGATE to synchronize registers.

Espressif Systems 417
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

7. Write 1 to I2C_TRANS_START to start transfer, and enable I2Cslave.

8. I2Cslave compares the slave address sent by I2Cmaster with its own address. When ack_check_en in

I2Cmaster’s WRITE command is 1, I2Cmaster checks ACK value each time it sends a byte. When

ack_check_en is 0, I2Cmaster does not check ACK value and take I2Cslave as matching slave by default.

• Match: If the received ACK value matches ack_exp (the expected ACK value), I2Cmaster continues

data transfer.

• Not match: If the received ACK value does not match ack_exp, I2Cmaster generates an I2C_NACK_INT

interrupt and stops data transfer.

9. I2Cmaster sends data, and checks ACK value or not according to ack_check_en.

10. If data to be sent is larger than the depth of TX FIFO, TX RAM of I2Cmaster may wrap around in FIFO mode.

For details, please refer to Section 21.4.9.

11. After data transfer completes, I2Cmaster executes the STOP command, and generates an

I2C_TRANS_COMPLETE_INT interrupt.

Espressif Systems 418
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.5.3 I2Cmaster Writes to I2Cslave with Two 7­bit Addresses in One Command Sequence

21.5.3.1 Introduction

Figure 21­8. I2Cmaster Writing to I2Cslave with Two 7­bit Addresses

Figure 21-8 shows how I2Cmaster writes N bytes of data to I2Cslave’s registers or RAM using 7-bit double

addressing. The configuration and transfer process is similar to what is described in Section 21.5.1, except that

in 7-bit double addressing mode I2Cmaster sends two 7-bit addresses. The first address is the address of an I2C

slave, and the second one is I2Cslave’s memory address (i.e. addrM in Figure 21-8 on the right). When using

double addressing, RAM must be accessed in non-FIFO mode. The I2C slave put received byte0 ~ byte(N-1) into

its registers or RAM in an order staring from addrM.

21.5.3.2 Configuration Example

1. Choose an I2Cslave that supports double addressing mode and enable this mode.

2. Set I2C_MS_MODE to 1.

3. Write 1 to I2C_CONF_UPGATE to synchronize registers.

4. Configure command registers of I2Cmaster.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 RSTART — — — —

I2C_COMMAND1 WRITE ack_value ack_exp 1 N+2

I2C_COMMAND2 STOP — — — —

5. Write I2Cslave address and data to be sent to TX RAM of I2Cmaster in FIFO or non-FIFO mode.

6. Set the address of I2Cslave via I2C_SLAVE_ADDR[7:0].

7. Write 1 to I2C_CONF_UPGATE to synchronize registers.

8. Write 1 to I2C_TRANS_START to start transfer, and enable I2Cslave.

Espressif Systems 419
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

9. I2Cslave compares the slave address sent by I2Cmaster with its own address. When ack_check_en in

I2Cmaster’s WRITE command is 1, I2Cmaster checks ACK value each time it sends a byte. When

ack_check_en is 0, I2Cmaster does not check ACK value and take I2Cslave as matching slave by default.

• Match: If the received ACK value matches ack_exp (the expected ACK value), I2Cmaster continues

data transfer.

• Not match: If the received ACK value does not match ack_exp, I2Cmaster generates an I2C_NACK_INT

interrupt and stops data transfer.

10. I2Cslave receives the RX RAM address sent by I2Cmaster and adds the offset.

11. I2Cmaster sends data, and checks ACK value or not according to ack_check_en.

12. If data to be sent is larger than the depth of TX FIFO, TX RAM of I2Cmaster may wrap around in FIFO mode.

For details, please refer to Section 21.4.9.

13. After data transfer completes, I2Cmaster executes the STOP command, and generates an

I2C_TRANS_COMPLETE_INT interrupt.

Espressif Systems 420
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.5.4 I2Cmaster Writes to I2Cslave with a 7­bit Address in Multiple Command Sequences

21.5.4.1 Introduction

Figure 21­9. I2Cmaster Writing to I2Cslave with a 7­bit Address in Multiple Sequences

Given that the I2C RAM holds only 16 bytes, when data are too large to be processed even by the wrapped

RAM, it is advised to transmit them in multiple command sequences by adding an END command at the end of

every sequence. When the controller executes this END command to pull SCL low, software refreshes command

sequence registers and RAM for next the transfer.

Figure 21-9 shows how I2Cmaster writes to an I2C slave in two or three segments as an example. For the first

segment, the CMD_Controller registers are configured as shown in Segment0. Once data in I2Cmaster’s RAM is

ready and I2C_TRANS_START is set, I2Cmaster initiates data transfer. After executing the END command,

I2Cmaster turns off the SCL clock and pulls SCL low to reserve the bus. Meanwhile, the controller generates an

I2C_END_DETECT_INT interrupt.

For the second segment, after detecting the I2C_END_DETECT_INT interrupt, software refreshes the

CMD_Controller registers, reloads the RAM and clears this interrupt, as shown in Segment1. If cmd1 in the

second segment is a STOP, then data is transmitted to I2Cslave in two segments. I2Cmaster resumes data transfer

Espressif Systems 421
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

after I2C_TRANS_START is set, and terminates the transfer by sending a STOP bit.

For the third segment, after the second data transfer finishes and an I2C_END_DETECT_INT is detected, the

CMD_Controller registers of I2Cmaster are configured as shown in Segment2. Once I2C_TRANS_START is set,

I2Cmaster generates a STOP bit and terminates the transfer.

Note that other I2Cmaster devices will not transact on the bus between two segments. The bus is only released

after a STOP signal is sent. The I2C master controller can be reset by setting I2C_FSM_RST field at any time.

This field will later be cleared automatically by hardware.

21.5.4.2 Configuration Example

1. Set I2C_MS_MODE to 1.

2. Write 1 to I2C_CONF_UPGATE to synchronize registers.

3. Configure command registers of I2Cmaster.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 RSTART — — — —

I2C_COMMAND1 WRITE ack_value ack_exp 1 N+1

I2C_COMMAND2 END — — — —

4. Write I2Cslave address and data to be sent to TX RAM of I2Cmaster in either FIFO mode or non-FIFO mode

according to Section 21.4.9.

5. Set the address of I2Cslave via I2C_SLAVE_ADDR[7:0].

6. Write 1 to I2C_CONF_UPGATE to synchronize registers.

7. Write 1 to I2C_TRANS_START to start transfer, and enable I2Cslave.

8. I2Cslave compares the slave address sent by I2Cmaster with its own address. When ack_check_en in

I2Cmaster’s WRITE command is 1, I2Cmaster checks ACK value each time it sends a byte. When

ack_check_en is 0, I2Cmaster does not check ACK value and take I2Cslave as matching slave by default.

• Match: If the received ACK value matches ack_exp (the expected ACK value), I2Cmaster continues

data transfer.

• Not match: If the received ACK value does not match ack_exp, I2Cmaster generates an I2C_NACK_INT

interrupt and stops data transfer.

9. I2Cmaster sends data, and checks ACK value or not according to ack_check_en.

10. After the I2C_END_DETECT_INT interrupt is generated, set I2C_END_DETECT_INT_CLR to 1 to clear this

interrupt.

11. Update I2Cmaster’s command registers.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 WRITE ack_value ack_exp 1 M

I2C_COMMAND1 END/STOP — — — —

12. Write M bytes of data to be sent to TX RAM of I2Cmaster in FIFO or non-FIFO mode.

Espressif Systems 422
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

13. Write 1 to I2C_TRANS_START bit to start transfer and repeat step 9.

14. If the command is a STOP, I2C stops transfer and generates an I2C_TRANS_COMPLETE_INT interrupt.

15. If the command is an END, repeat step 10.

16. Update I2Cmaster’s command registers.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND1 STOP — — — —

17. Write 1 to I2C_TRANS_START bit to start transfer.

18. I2Cmaster executes the STOP command and generates an I2C_TRANS_COMPLETE_INT interrupt.

21.5.5 I2Cmaster Reads I2Cslave with a 7­bit Address in One Command Sequence

21.5.5.1 Introduction

Figure 21­10. I2Cmaster Reading I2Cslave with a 7­bit Address

Figure 21-10 shows how I2Cmaster reads N bytes of data from an I2C slave’s registers or RAM using 7-bit

addressing. cmd1 is a WRITE command, and when this command is executed, I2Cmaster sends I2Cslave address.

The byte sent comprises a 7-bit I2Cslave address and a R/W bit. When the R/W bit is 1, it indicates a READ

operation. If the address of an I2C slave matches the sent address, this matching slave starts sending data to

I2Cmaster. I2Cmaster generates acknowledgements according to ack_value defined in the READ command upon

receiving a byte.

As illustrated in Figure 21-10, I2Cmaster executes two READ commands: it generates ACKs for (N-1) bytes of data

in cmd2, and a NACK for the last byte of data in cmd3. This configuration may be changed as required. I2Cmaster

writes received data into the controller RAM from addr0, whose original content (a I2Cslave address and a R/W

bit) is overwritten by byte0 marked red in Figure 21-10.

Espressif Systems 423
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.5.5.2 Configuration Example

1. Set I2C_MS_MODE to 1.

2. Write 1 to I2C_CONF_UPGATE to synchronize registers.

3. Configure command registers of I2Cmaster.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 RSTART — — — —

I2C_COMMAND1 WRITE 0 0 1 1

I2C_COMMAND2 READ 0 0 1 N-1

I2C_COMMAND3 READ 1 0 1 1

I2C_COMMAND4 STOP — — — —

4. Write I2Cslave address to TX RAM of I2Cmaster in either FIFO mode or non-FIFO mode according to Section

21.4.9.

5. Set the address of I2Cslave via I2C_SLAVE_ADDR[7:0].

6. Write 1 to I2C_CONF_UPGATE to synchronize registers.

7. Write 1 to I2C_TRANS_START bit to start transfer, and enable I2Cslave.

8. I2Cslave compares the slave address sent by I2Cmaster with its own address. When ack_check_en in

I2Cmaster’s WRITE command is 1, I2Cmaster checks ACK value each time it sends a byte. When

ack_check_en is 0, I2Cmaster does not check ACK value and take I2Cslave as matching slave by default.

• Match: If the received ACK value matches ack_exp (the expected ACK value), I2Cmaster continues

data transfer.

• Not match: If the received ACK value does not match ack_exp, I2Cmaster generates an I2C_NACK_INT

interrupt and stops data transfer.

9. I2Cslave sends data, and I2Cmaster sends ACK value according to ack_check_en in the READ command.

10. If data to be received (N) is larger than the depth of RX FIFO, RX RAM of I2Cmaster may wrap around in FIFO

mode. For details, please refer to Section 21.4.9.

11. After I2Cmaster has received the last byte of data, set ack_value to 1. I2Cslave will stop transfer once

receiving the I2C_NACK_INT interrupt.

12. After data transfer completes, I2Cmaster executes the STOP command, and generates an

I2C_TRANS_COMPLETE_INT interrupt.

21.5.6 I2Cmaster Reads I2Cslave with a 10­bit Address in One Command Sequence

Espressif Systems 424
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.5.6.1 Introduction

Figure 21­11. I2Cmaster Reading I2Cslave with a 10­bit Address

Figure 21-11 shows how I2Cmaster reads data from an I2C slave’s registers or RAM using 10-bit addressing.

Unlike 7-bit addressing, in 10-bit addressing the WRITE command of the I2Cmaster is formed from two bytes, and

correspondingly TX RAM of this master stores a 10-bit address of two bytes. The R/W bit in the first byte is 0,

which indicates a WRITE operation. After a RSTART condition, I2Cmaster sends the first byte of address again to

read data from I2Cslave, but the R/W bit is 1, which indicates a READ operation. The two address bytes can be

configured as described in Section 21.5.2.

21.5.6.2 Configuration Example

1. Set I2C_MS_MODE to 1.

2. Write 1 to I2C_CONF_UPGATE to synchronize registers.

3. Configure command registers of I2Cmaster.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 RSTART — — — —

I2C_COMMAND1 WRITE 0 0 1 2

I2C_COMMAND2 RSTART — — — —

I2C_COMMAND3 WRITE 0 0 1 1

I2C_COMMAND4 READ 0 0 1 N-1

I2C_COMMAND5 READ 1 0 1 1

I2C_COMMAND6 STOP — — — —

Espressif Systems 425
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

4. Set the 10-bit address of I2Cslave via I2C_SLAVE_ADDR[9:0].

5. Write I2Cslave address and data to be sent to TX RAM of I2Cmaster in either FIFO or non-FIFO mode. The first

byte of address comprises ((0x78 | I2C_SLAVE_ADDR[9:8])«1) and a R/W bit, which is 1 and indicates a

WRITE operation. The second byte of address is I2C_SLAVE_ADDR[7:0]. The third byte is ((0x78 |

I2C_SLAVE_ADDR[9:8])«1) and a R/W bit, which is 1 and indicates a READ operation.

6. Write 1 to I2C_CONF_UPGATE to synchronize registers.

7. Write 1 to I2C_TRANS_START to start transfer, and enable I2Cslave.

8. I2Cslave compares the slave address sent by I2Cmaster with its own address. When ack_check_en in

I2Cmaster’s WRITE command is 1, I2Cmaster checks ACK value each time it sends a byte. When

ack_check_en is 0, I2Cmaster does not check ACK value and take I2Cslave as matching slave by default.

• Match: If the received ACK value matches ack_exp (the expected ACK value), I2Cmaster continues

data transfer.

• Not match: If the received ACK value does not match ack_exp, I2Cmaster generates an I2C_NACK_INT

interrupt and stops data transfer.

9. I2Cmaster sends a RSTART and the third byte in TX RAM, which is ((0x78 | I2C_SLAVE_ADDR[9:8])«1) and a

R/W bit that indicates READ.

10. I2Cslave repeats step 8. If its address matches the address sent by I2Cmaster, I2Cslave proceed on to the next

steps.

11. I2Cslave sends data, and I2Cmaster sends ACK value according to ack_check_en in the READ command.

12. If data to be received (N) is larger than the depth of RX FIFO, RX RAM of I2Cmaster may wrap around in FIFO

mode. For details, please refer to Section 21.4.9.

13. After I2Cmaster has received the last byte of data, set ack_value to 1. I2Cslave will stop transfer once

receiving the I2C_NACK_INT interrupt.

14. After data transfer completes, I2Cmaster executes the STOP command, and generates an

I2C_TRANS_COMPLETE_INT interrupt.

Espressif Systems 426
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.5.7 I2Cmaster Reads I2Cslave with Two 7­bit Addresses in One Command Sequence

21.5.7.1 Introduction

Figure 21­12. I2Cmaster Reading N Bytes of Data from addrM of I2Cslave with a 7­bit Address

Figure 21-12 shows how I2Cmaster reads data from specified addresses in I2C slave’s registers or RAM. I2Cmaster

sends two bytes of addresses: the first byte is a 7-bit I2Cslave address followed by a R/W bit, which is 0 and

indicates a WRITE; the second byte is I2Cslave’s memory address addrM. After a RSTART condition, I2Cmaster

sends the first byte of address again, but the R/W bit is 1 which indicates a READ. Then, I2Cmaster reads data

starting from addrM.

21.5.7.2 Configuration Example

1. Set I2C_MS_MODE to 1.

2. Write 1 to I2C_CONF_UPGATE to synchronize registers.

3. Choose an I2Cslave that supports double addressing mode and enable this mode.

4. Configure command registers of I2Cmaster.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 RSTART — — — —

I2C_COMMAND1 WRITE 0 0 1 2

I2C_COMMAND2 RSTART — — — —

I2C_COMMAND3 WRITE 0 0 1 1

I2C_COMMAND4 READ 0 0 1 N-1

Espressif Systems 427
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

I2C_COMMAND5 READ 1 0 1 1

I2C_COMMAND6 STOP — — — —

5. Set the address of I2Cslave via I2C_SLAVE_ADDR[7:0].

6. Write I2Cslave address and data to be sent to TX RAM of I2Cmaster in either FIFO or non-FIFO mode

according to Section 21.4.9. The first byte of address comprises (I2C_SLAVE_ADDR[6:0])«1) and a R/W

bit, which is 0 and indicates a WRITE. The second byte of address is memory address M of I2Cslave. The

third byte is (I2C_SLAVE_ADDR[6:0])«1) and a R/W bit, which is 1 and indicates a READ.

7. Write 1 to I2C_CONF_UPGATE to synchronize registers.

8. Write 1 to I2C_TRANS_START to start transfer, and enable I2Cslave.

9. I2Cslave compares the slave address sent by I2Cmaster with its own address. When ack_check_en in

I2Cmaster’s WRITE command is 1, I2Cmaster checks ACK value each time it sends a byte. When

ack_check_en is 0, I2Cmaster does not check ACK value and take I2Cslave as matching slave by default.

• Match: If the received ACK value matches ack_exp (the expected ACK value), I2Cmaster continues

data transfer.

• Not match: If the received ACK value does not match ack_exp, I2Cmaster generates an I2C_NACK_INT

interrupt and stops data transfer.

10. I2Cslave receives memory address sent by I2Cmaster and adds the offset.

11. I2Cmaster sends a RSTART and the third byte in TX RAM, which is ((0x78 | I2C_SLAVE_ADDR[9:8])«1) and a

R bit.

12. I2Cslave repeats step 9. If its address matches the address sent by I2Cmaster, I2Cslave proceed on to the next

steps.

13. I2Cslave sends data, and I2Cmaster sends ACK value according to ack_check_en in the READ command.

14. If data to be received (N) is larger than the depth of RX FIFO, RX RAM of I2Cmaster may wrap around in FIFO

mode. For details, please refer to Section 21.4.9.

15. After I2Cmaster has received the last byte of data, set ack_value to 1. I2Cslave will stop transfer once

receiving the I2C_NACK_INT interrupt.

16. After data transfer completes, I2Cmaster executes the STOP command, and generates an

I2C_TRANS_COMPLETE_INT interrupt.

Espressif Systems 428
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.5.8 I2Cmaster Reads I2Cslave with a 7­bit Address in Multiple Command Sequences

21.5.8.1 Introduction

Figure 21­13. I2Cmaster Reading I2Cslave with a 7­bit Address in Segments

Figure 21-13 shows how I2Cmaster reads (N+M) bytes of data from an I2C slave in two/three segments separated

by END commands. Configuration procedures are described as follows:

1. The procedures for Segment0 is similar to Figure 21-10, except that the last command is an END.

2. Prepare the data that I2Cslave will send, and set I2C_TRANS_START (master) to start data transfer. After

executing the END command, I2Cmaster refreshes command registers and the RAM as shown in Segment1,

and clears the corresponding I2C_END_DETECT_INT interrupt. If cmd2 in Segment1 is a STOP, then data

is read from I2Cslave in two segments. I2Cmaster resumes data transfer by setting I2C_TRANS_START and

terminates the transfer by sending a STOP bit.

Espressif Systems 429
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

3. If cmd2 in Segment1 is an END, then data is read from I2Cslave in three segments. After the second data

transfer finishes and an I2C_END_DETECT_INT interrupt is detected, the cmd box is configured as shown

in Segment2. Once I2C_TRANS_START(master) is set, I2Cmaster terminates the transfer by sending a STOP

bit.

21.5.8.2 Configuration Example

1. Set I2C_MS_MODE to 1.

2. Write 1 to I2C_CONF_UPGATE to synchronize registers.

3. Configure command registers of I2Cmaster.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 RSTART — — — —

I2C_COMMAND1 WRITE 0 0 1 1

I2C_COMMAND2 READ 0 0 1 N

I2C_COMMAND3 END — — — —

4. Write I2Cslave address to TX RAM of I2Cmaster in FIFO or non-FIFO mode.

5. Set the address of I2Cslave via I2C_SLAVE_ADDR[7:0].

6. Write 1 to I2C_CONF_UPGATE to synchronize registers.

7. Write 1 to I2C_TRANS_START to start transfer, and enable I2Cslave.

8. I2Cslave compares the slave address sent by I2Cmaster with its own address. When ack_check_en in

I2Cmaster’s WRITE command is 1, I2Cmaster checks ACK value each time it sends a byte. When

ack_check_en is 0, I2Cmaster does not check ACK value and take I2Cslave as matching slave by default.

• Match: If the received ACK value matches ack_exp (the expected ACK value), I2Cmaster continues

data transfer.

• Not match: If the received ACK value does not match ack_exp, I2Cmaster generates an I2C_NACK_INT

interrupt and stops data transfer.

9. I2Cslave sends data, and I2Cmaster sends ACK value according to ack_check_en in the READ command.

10. If data to be received (N) is larger than the depth of RX FIFO, RX RAM of I2Cmaster may wrap around in FIFO

mode. For details, please refer to Section 21.4.9.

11. Once finishing reading data in the first READ command, I2Cmaster executes the END command and triggers

an I2C_END_DETECT_INT interrupt, which is cleared by setting I2C_END_DETECT_INT_CLR to 1.

12. Update I2Cmaster’s command registers using one of the following two methods:

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND0 READ ack_value ack_exp 1 M

I2C_COMMAND1 END — — — —

Or

Command registers op_code ack_value ack_exp ack_check_en byte_num

Espressif Systems 430
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

I2C_COMMAND0 READ 0 0 1 M-1

I2C_COMMAND1 READ 1 0 1 1

I2C_COMMAND2 STOP — — — —

13. Prepare data that I2Cslave will send.

14. Write 1 to I2C_TRANS_START bit to start transfer and repeat step 9.

15. If the last command is a STOP, then set ack_value to 1 after I2Cmaster has received the last byte of data.

I2Cslave stops transfer upon the I2C_NACK_INT interrupt. I2Cmaster executes the STOP command to stop

transfer and generates an I2C_TRANS_COMPLETE_INT interrupt.

16. If the last command is an END, then repeat step 11 and proceed on to the next steps.

17. Update I2Cmaster’s command registers.

Command registers op_code ack_value ack_exp ack_check_en byte_num

I2C_COMMAND1 STOP — — — —

18. Write 1 to I2C_TRANS_START bit to start transfer.

19. I2Cmaster executes the STOP command to stop transfer, and generates an I2C_TRANS_COMPLETE_INT

interrupt.

21.6 Interrupts

• I2C_DET_START_INT: Triggered when the master or the slave detects a START bit.

• I2C_SCL_MAIN_ST_TO_INT: Triggered when the main state machine SCL_MAIN_FSM remains unchanged

for over I2C_SCL_MAIN_ST_TO_I2C[23:0] clock cycles.

• I2C_SCL_ST_TO_INT: Triggered when the state machine SCL_FSM remains unchanged for over

I2C_SCL_ST_TO_I2C[23:0] clock cycles.

• I2C_RXFIFO_UDF_INT: Triggered when the I2C master controller reads RX FIFO via the APB bus, but RX

FIFO is empty.

• I2C_TXFIFO_OVF_INT: Triggered when the I2C master controller writes TX FIFO via the APB bus, but TX

FIFO is full.

• I2C_NACK_INT: Triggered when the ACK value received by the master is not as expected, or when the

ACK value received by the slave is 1.

• I2C_TRANS_START_INT: Triggered when the I2C master controller sends a START bit.

• I2C_TIME_OUT_INT: Triggered when SCL stays high or low for more than I2C_TIME_OUT_VALUE clock

cycles during data transfer.

• I2C_TRANS_COMPLETE_INT: Triggered when the I2C master controller detects a STOP bit.

• I2C_MST_TXFIFO_UDF_INT: Triggered when TX FIFO of the master underflows.

• I2C_ARBITRATION_LOST_INT: Triggered when the SDA’s output value does not match its input value while

the master’s SCL is high.

Espressif Systems 431
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

• I2C_BYTE_TRANS_DONE_INT: Triggered when the I2C master controller sends or receives a byte.

• I2C_END_DETECT_INT: Triggered when op_code of the master indicates an END command and an END

condition is detected.

• I2C_RXFIFO_OVF_INT: Triggered when RX FIFO of the I2C master controller overflows.

• I2C_TXFIFO_WM_INT: I2C TX FIFO watermark interrupt. Triggered when I2C_FIFO_PRT_EN is 1 and the

pointers of TX FIFO are less than I2C_TXFIFO_WM_THRHD[4:0].

• I2C_RXFIFO_WM_INT: I2C RX FIFO watermark interrupt. Triggered when I2C_FIFO_PRT_EN is 1 and the

pointers of RX FIFO are greater than I2C_RXFIFO_WM_THRHD[4:0].

Espressif Systems 432
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.7 Register Summary

The addresses in this section are relative to I2C Master controller base address provided in Table 3-3 in Chapter

3 System and Memory.

Name Description Address Access

Timing registers

I2C_SCL_LOW_PERIOD_REG Configures the low level width of SCL 0x0000 R/W

I2C_SDA_HOLD_REG
Configures the hold time after a falling SCL

edge
0x0030 R/W

I2C_SDA_SAMPLE_REG
Configures the sample time after a rising SCL

edge
0x0034 R/W

I2C_SCL_HIGH_PERIOD_REG Configures the high level width of SCL 0x0038 R/W

I2C_SCL_START_HOLD_REG
Configures the delay between the SDA and

SCL falling edge for a START condition
0x0040 R/W

I2C_SCL_RSTART_SETUP_REG
Configures the delay between the rising edge

of SCL and the falling edge of SDA
0x0044 R/W

I2C_SCL_STOP_HOLD_REG
Configures the delay after the SCL clock edge

for a STOP condition
0x0048 R/W

I2C_SCL_STOP_SETUP_REG
Configures the delay between the SDA and

SCL rising edge for a STOP condition
0x004C R/W

I2C_SCL_ST_TIME_OUT_REG SCL status timeout register 0x0078 R/W

I2C_SCL_MAIN_ST_TIME_OUT_REG SCL main status timeout register 0x007C R/W

Configuration registers

I2C_CTR_REG Transmission configuration register 0x0004 varies

I2C_TO_REG Timeout control register 0x000C R/W

I2C_FIFO_CONF_REG FIFO configuration register 0x0018 R/W

I2C_FILTER_CFG_REG SCL and SDA filter configuration register 0x0050 R/W

I2C_CLK_CONF_REG I2C clock configuration register 0x0054 R/W

I2C_SCL_SP_CONF_REG Power configuration register 0x0080 varies

Status registers

I2C_SR_REG Describes I2C work status 0x0008 RO

I2C_FIFO_ST_REG FIFO status register 0x0014 RO

I2C_DATA_REG Read/write FIFO register 0x001C R/W

Interrupt registers

I2C_INT_RAW_REG Raw interrupt status 0x0020 R/SS/WTC

I2C_INT_CLR_REG Interrupt clear bits 0x0024 WT

I2C_INT_ENA_REG Interrupt enable bits 0x0028 R/W

I2C_INT_STATUS_REG Status of captured I2C communication events 0x002C RO

Command registers

I2C_COMD0_REG I2C command register 0 0x0058 varies

I2C_COMD1_REG I2C command register 1 0x005C varies

I2C_COMD2_REG I2C command register 2 0x0060 varies

I2C_COMD3_REG I2C command register 3 0x0064 varies

I2C_COMD4_REG I2C command register 4 0x0068 varies

Espressif Systems 433
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Name Description Address Access

I2C_COMD5_REG I2C command register 5 0x006C varies

I2C_COMD6_REG I2C command register 6 0x0070 varies

I2C_COMD7_REG I2C command register 7 0x0074 varies

Address registers

I2C_TXFIFO_START_ADDR_REG I2C TX FIFO base address register 0x0100 HRO

I2C_RXFIFO_START_ADDR_REG I2C RX FIFO base address register 0x0180 HRO

Version register

I2C_DATE_REG Version control register 0x00F8 R/W

Espressif Systems 434
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

21.8 Registers

The addresses in this section are relative to I2C Master controller base address provided in Table 3-3 in Chapter

3 System and Memory.

Register 21.1. I2C_SCL_LOW_PERIOD_REG (0x0000)

(re
se
rve
d)

0 0

31 9

I2C
_S
CL
_L
OW

_P
ER
IO
D

0

8 0

Reset

I2C_SCL_LOW_PERIOD This field is used to configure how long SCL remains low, in I2C module

clock cycles. (R/W)

Register 21.2. I2C_SDA_HOLD_REG (0x0030)

(re
se
rve
d)

0 0

31 9

I2C
_S
DA
_H
OL
D_
TIM

E

0

8 0

Reset

I2C_SDA_HOLD_TIME This field is used to configure the time to hold the data after the falling edge

of SCL, in I2C module clock cycles. (R/W)

Register 21.3. I2C_SDA_SAMPLE_REG (0x0034)

(re
se
rve
d)

0 0

31 9

I2C
_S
DA
_S
AM
PL
E_
TIM

E

0

8 0

Reset

I2C_SDA_SAMPLE_TIME This field is used to configure how long SDA is sampled, in I2C module

clock cycles. (R/W)

Espressif Systems 435
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.4. I2C_SCL_HIGH_PERIOD_REG (0x0038)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

I2C
_S
CL
_W
AI
T_
HI
GH
_P
ER
IO
D

0

15 9

I2C
_S
CL
_H
IG
H_
PE
RI
OD

0

8 0

Reset

I2C_SCL_HIGH_PERIOD This field is used to configure how long SCL remains high, in I2C module

clock cycles. (R/W)

I2C_SCL_WAIT_HIGH_PERIOD This field is used to configure the SCL_FSM’s waiting period for SCL

high level, in I2C module clock cycles. (R/W)

Register 21.5. I2C_SCL_START_HOLD_REG (0x0040)

(re
se
rve
d)

0 0

31 9

I2C
_S
CL
_S
TA
RT
_H
OL
D_
TIM

E

8

8 0

Reset

I2C_SCL_START_HOLD_TIME This field is used to configure the time between the falling edge of

SDA and the falling edge of SCL for a START condition, in I2C module clock cycles. (R/W)

Register 21.6. I2C_SCL_RSTART_SETUP_REG (0x0044)

(re
se
rve
d)

0 0

31 9

I2C
_S
CL
_R
ST
AR
T_
SE
TU
P_
TIM

E

8

8 0

Reset

I2C_SCL_RSTART_SETUP_TIME This field is used to configure the time between the rising edge of

SCL and the falling edge of SDA for a RSTART condition, in I2C module clock cycles. (R/W)

Espressif Systems 436
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.7. I2C_SCL_STOP_HOLD_REG (0x0048)

(re
se
rve
d)

0 0

31 9

I2C
_S
CL
_S
TO
P_
HO
LD
_T
IM
E

8

8 0

Reset

I2C_SCL_STOP_HOLD_TIME This field is used to configure the delay after the STOP condition, in

I2C module clock cycles. (R/W)

Register 21.8. I2C_SCL_STOP_SETUP_REG (0x004C)

(re
se
rve
d)

0 0

31 9

I2C
_S
CL
_S
TO
P_
SE
TU
P_
TIM

E

8

8 0

Reset

I2C_SCL_STOP_SETUP_TIME This field is used to configure the time between the rising edge of

SCL and the rising edge of SDA, in I2C module clock cycles. (R/W)

Register 21.9. I2C_SCL_ST_TIME_OUT_REG (0x0078)

(re
se
rve
d)

0 0

31 5

I2C
_S
CL
_S
T_
TO
_I2
C

0x10

4 0

Reset

I2C_SCL_ST_TO_I2C The maximum time that SCL_FSM remains unchanged. It should be no more

than 23. (R/W)

Espressif Systems 437
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.10. I2C_SCL_MAIN_ST_TIME_OUT_REG (0x007C)

(re
se
rve
d)

0 0

31 5

I2C
_S
CL
_M
AI
N_
ST
_T
O_
I2C

0x10

4 0

Reset

I2C_SCL_MAIN_ST_TO_I2C The maximum time that SCL_MAIN_FSM remains unchanged. It

should be no more than 23. (R/W)

Espressif Systems 438
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.11. I2C_CTR_REG (0x0004)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 13

I2C
_S
LV
_T
X_
AU
TO
_S
TA
RT
_E
N

0

12

I2C
_C
ON
F_
UP
GA
TE

0

11

I2C
_F
SM
_R
ST

0

10

I2C
_A
RB
ITR
AT
IO
N_
EN

1

9

I2C
_C
LK
_E
N

0

8

I2C
_R
X_
LS
B_
FIR
ST

0

7

I2C
_T
X_
LS
B_
FIR
ST

0

6

I2C
_T
RA
NS
_S
TA
RT

0

5

I2C
_M
S_
M
OD
E

0

4

I2C
_R
X_
FU
LL
_A
CK
_L
EV
EL

1

3

I2C
_S
AM
PL
E_
SC
L_
LE
VE
L

0

2

I2C
_S
CL
_F
OR
CE
_O
UT

1

1

I2C
_S
DA
_F
OR
CE
_O
UT

1

0

Reset

I2C_SDA_FORCE_OUT 0: direct output; 1: open-drain output. (R/W)

I2C_SCL_FORCE_OUT 0: direct output; 1: open-drain output. (R/W)

I2C_SAMPLE_SCL_LEVEL This bit is used to select the sampling mode. 0: samples SDA data on

the SCL high level; 1: samples SDA data on the SCL low level. (R/W)

I2C_RX_FULL_ACK_LEVEL This bit is used to configure the ACK value that need to be sent by

master when I2C_RXFIFO_CNT has reached the threshold. (R/W)

I2C_MS_MODE Set this bit to configure the I2C master controller as an I2C Master. Clear this bit to

make the I2C master controller non-operational. (R/W)

I2C_TRANS_START Set this bit to start sending the data in TX FIFO. (WT)

I2C_TX_LSB_FIRST This bit is used to control the order to send data. 0: sends data from the most

significant bit; 1: sends data from the least significant bit. (R/W)

I2C_RX_LSB_FIRST This bit is used to control the order to receive data. 0: receives data from the

most significant bit; 1: receives data from the least significant bit. (R/W)

I2C_CLK_EN Reserved. (R/W)

I2C_ARBITRATION_EN This is the enable bit for I2C bus arbitration function. (R/W)

I2C_FSM_RST This bit is used to reset the SCL_FSM. (WT)

I2C_CONF_UPGATE Synchronization bit. (WT)

I2C_SLV_TX_AUTO_START_EN This is the enable bit for slave to send data automatically. (R/W)

Espressif Systems 439
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.12. I2C_TO_REG (0x000C)

(re
se
rve
d)

0 0

31 6

I2C
_T
IM
E_
OU
T_
EN

0

5

I2C
_T
IM
E_
OU
T_
VA
LU
E

0x10

4 0

Reset

I2C_TIME_OUT_VALUE This field is used to configure the timeout for receiving a data bit in APB clock

cycles. (R/W)

I2C_TIME_OUT_EN This is the enable bit for timeout control. (R/W)

Register 21.13. I2C_FIFO_CONF_REG (0x0018)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 15

I2C
_F
IFO
_P
RT
_E
N

1

14

I2C
_T
X_
FIF
O_
RS
T

0

13

I2C
_R
X_
FIF
O_
RS
T

0

12

(re
se
rve
d)

0

11

I2C
_N
ON
FIF
O_
EN

0

10

(re
se
rve
d)

0

9

I2C
_T
XF
IFO
_W
M
_T
HR
HD

0x2

8 5

(re
se
rve
d)

0

4

I2C
_R
XF
IFO
_W
M
_T
HR
HD

0x6

3 0

Reset

I2C_RXFIFO_WM_THRHD The watermark threshold of RX FIFO in non-FIFO mode. When

I2C_FIFO_PRT_EN is 1 and RX FIFO counter is bigger than I2C_RXFIFO_WM_THRHD[3:0],

I2C_RXFIFO_WM_INT_RAW bit is valid. (R/W)

I2C_TXFIFO_WM_THRHD The watermark threshold of TX FIFO in non-FIFO mode. When

I2C_FIFO_PRT_EN is 1 and TX FIFO counter is smaller than I2C_TXFIFO_WM_THRHD[3:0],

I2C_TXFIFO_WM_INT_RAW bit is valid. (R/W)

I2C_NONFIFO_EN Set this bit to enable APB non-FIFO mode. (R/W)

I2C_RX_FIFO_RST Set this bit to reset RX FIFO. (R/W)

I2C_TX_FIFO_RST Set this bit to reset TX FIFO. (R/W)

I2C_FIFO_PRT_EN The control enable bit of FIFO pointer in non-FIFO mode. This bit controls the

valid bits and TX/RX FIFO overflow, underflow, full and empty interrupts. (R/W)

Espressif Systems 440
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.14. I2C_FILTER_CFG_REG (0x0050)

(re
se
rve
d)

0 0

31 10

I2C
_S
DA
_F
ILT
ER
_E
N

1

9

I2C
_S
CL
_F
ILT
ER
_E
N

1

8

I2C
_S
DA
_F
ILT
ER
_T
HR
ES

0

7 4

I2C
_S
CL
_F
ILT
ER
_T
HR
ES

0

3 0

Reset

I2C_SCL_FILTER_THRES When a pulse on the SCL input has smaller width than the value of this

field in I2C module clock cycles, the I2C master controller ignores that pulse. (R/W)

I2C_SDA_FILTER_THRES When a pulse on the SDA input has smaller width than the value of this

field in I2C module clock cycles, the I2C master controller ignores that pulse. (R/W)

I2C_SCL_FILTER_EN This is the filter enable bit for SCL. (R/W)

I2C_SDA_FILTER_EN This is the filter enable bit for SDA. (R/W)

Register 21.15. I2C_CLK_CONF_REG (0x0054)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0

31 22

I2C
_S
CL
K_
AC
TIV
E

1

21

I2C
_S
CL
K_
SE
L

0

20

I2C
_S
CL
K_
DI
V_
B

0

19 14

I2C
_S
CL
K_
DI
V_
A

0

13 8

I2C
_S
CL
K_
DI
V_
NU
M

0

7 0

Reset

I2C_SCLK_DIV_NUM The integral part of the divisor. (R/W)

I2C_SCLK_DIV_A The numerator of the divisor’s fractional part. (R/W)

I2C_SCLK_DIV_B The denominator of the divisor’s fractional part. (R/W)

I2C_SCLK_SEL The clock selection bit for the I2C master controller. 0: XTAL_CLK; 1: FOSC_CLK.

(R/W)

I2C_SCLK_ACTIVE The clock switch bit for the I2C master controller. (R/W)

Espressif Systems 441
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.16. I2C_SCL_SP_CONF_REG (0x0080)

(re
se
rve
d)

0 0

31 8

I2C
_S
DA
_P
D_
EN

0

7

I2C
_S
CL
_P
D_
EN

0

6

I2C
_S
CL
_R
ST
_S
LV
_N
UM

0

5 1

I2C
_S
CL
_R
ST
_S
LV
_E
N

0

0

Reset

I2C_SCL_RST_SLV_EN When the master is idle, set this bit to send out SCL pulses. The number of

pulses equals to I2C_SCL_RST_SLV_NUM[4:0]. (R/W/SC)

I2C_SCL_RST_SLV_NUM Configures the pulses of SCL generated. Valid when

I2C_SCL_RST_SLV_EN is 1. (R/W)

I2C_SCL_PD_EN The power down enable bit for the I2C output SCL line. 0: Not power down; 1:

Power down. Set I2C_SCL_FORCE_OUT and I2C_SCL_PD_EN to 1 to stretch SCL low. (R/W)

I2C_SDA_PD_EN The power down enable bit for the I2C output SDA line. 0: Not power down; 1:

Power down. Set I2C_SDA_FORCE_OUT and I2C_SDA_PD_EN to 1 to stretch SDA low. (R/W)

Register 21.17. I2C_SR_REG (0x0008)

(re
se
rve
d)

0

31

I2C
_S
CL
_S
TA
TE
_L
AS
T

0

30 28

(re
se
rve
d)

0

27

I2C
_S
CL
_M
AI
N_
ST
AT
E_
LA
ST

0

26 24

(re
se
rve
d)

0

23

I2C
_T
XF
IFO
_C
NT

0

22 18

(re
se
rve
d)

0 0 0 0 0

17 13

I2C
_R
XF
IFO
_C
NT

0

12 8

(re
se
rve
d)

0 0 0

7 5

I2C
_B
US
_B
US
Y

0

4

I2C
_A
RB
_L
OS
T

0

3

(re
se
rve
d)

0 0

2 1

I2C
_R
ES
P_
RE
C

0

0

Reset

I2C_RESP_REC The received ACK value. 0: ACK; 1: NACK. (RO)

I2C_ARB_LOST When the I2C master controller loses control of the SCL line, this bit changes to 1.

(RO)

I2C_BUS_BUSY 0: The I2C bus is in idle state; 1: The I2C bus is busy transferring data. (RO)

I2C_RXFIFO_CNT This field represents the number of data bytes to be sent. (RO)

I2C_TXFIFO_CNT This field stores the number of data bytes received in RAM. (RO)

I2C_SCL_MAIN_STATE_LAST This field indicates the status of the state machine. 0: idle; 1: address

shift; 2: ACK address; 3: receive data; 4: transmit data; 5: send ACK; 6: wait for ACK. (RO)

I2C_SCL_STATE_LAST This field indicates the status of the state machine used to produce SCL. 0:

idle; 1: start; 2: falling edge; 3: low; 4: rising edge; 5: high; 6: stop. (RO)

Espressif Systems 442
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.18. I2C_FIFO_ST_REG (0x0014)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

I2C
_T
XF
IFO
_W
AD
DR

0

18 15

(re
se
rve
d)

0

14

I2C
_T
XF
IFO
_R
AD
DR

0

13 10

(re
se
rve
d)

0

9

I2C
_R
XF
IFO
_W
AD
DR

0

8 5

(re
se
rve
d)

0

4

I2C
_R
XF
IFO
_R
AD
DR

0

3 0

Reset

I2C_RXFIFO_RADDR This is the offset address of the APB reading from RX FIFO. (RO)

I2C_RXFIFO_WADDR This is the offset address of the I2Cmaster controller receiving data and writing

to RX FIFO. (RO)

I2C_TXFIFO_RADDR This is the offset address of the I2C master controller reading from TX FIFO.

(RO)

I2C_TXFIFO_WADDR This is the offset address of APB bus writing to TX FIFO. (RO)

Register 21.19. I2C_DATA_REG (0x001C)

(re
se
rve
d)

0 0

31 8

I2C
_F
IFO
_R
DA
TA

0

7 0

Reset

I2C_FIFO_RDATA This field is used to read data from RX FIFO, or write data to TX FIFO. (R/W)

Espressif Systems 443
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.20. I2C_INT_RAW_REG (0x0020)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

I2C
_D
ET
_S
TA
RT
_IN
T_
RA
W

0

15

I2C
_S
CL
_M
AI
N_
ST
_T
O_
IN
T_
RA
W

0

14

I2C
_S
CL
_S
T_
TO
_IN
T_
RA
W

0

13

I2C
_R
XF
IFO
_U
DF
_IN
T_
RA
W

0

12

I2C
_T
XF
IFO
_O
VF
_IN
T_
RA
W

0

11

I2C
_N
AC
K_
IN
T_
RA
W

0

10

I2C
_T
RA
NS
_S
TA
RT
_IN
T_
RA
W

0

9

I2C
_T
IM
E_
OU
T_
IN
T_
RA
W

0

8

I2C
_T
RA
NS
_C
OM

PL
ET
E_
IN
T_
RA
W

0

7

I2C
_M
ST
_T
XF
IFO
_U
DF
_IN
T_
RA
W

0

6

I2C
_A
RB
ITR
AT
IO
N_
LO
ST
_IN
T_
RA
W

0

5

I2C
_B
YT
E_
TR
AN
S_
DO
NE
_IN
T_
RA
W

0

4

I2C
_E
ND
_D
ET
EC
T_
IN
T_
RA
W

0

3

I2C
_R
XF
IFO
_O
VF
_IN
T_
RA
W

0

2

I2C
_T
XF
IFO
_W
M
_IN
T_
RA
W

1

1

I2C
_R
XF
IFO
_W
M
_IN
T_
RA
W

0

0

Reset

I2C_RXFIFO_WM_INT_RAW The raw interrupt bit for the I2C_RXFIFO_WM_INT interrupt.

(R/SS/WTC)

I2C_TXFIFO_WM_INT_RAW The raw interrupt bit for the I2C_TXFIFO_WM_INT interrupt.

(R/SS/WTC)

I2C_RXFIFO_OVF_INT_RAW The raw interrupt bit for the I2C_RXFIFO_OVF_INT interrupt.

(R/SS/WTC)

I2C_END_DETECT_INT_RAW The raw interrupt bit for the I2C_END_DETECT_INT interrupt.

(R/SS/WTC)

I2C_BYTE_TRANS_DONE_INT_RAW The raw interrupt bit for the I2C_END_DETECT_INT interrupt.

(R/SS/WTC)

I2C_ARBITRATION_LOST_INT_RAW The raw interrupt bit for the I2C_ARBITRATION_LOST_INT in-

terrupt. (R/SS/WTC)

I2C_MST_TXFIFO_UDF_INT_RAW The raw interrupt bit for the I2C_TRANS_COMPLETE_INT inter-

rupt. (R/SS/WTC)

I2C_TRANS_COMPLETE_INT_RAW The raw interrupt bit for the I2C_TRANS_COMPLETE_INT in-

terrupt. (R/SS/WTC)

I2C_TIME_OUT_INT_RAW The raw interrupt bit for the I2C_TIME_OUT_INT interrupt. (R/SS/WTC)

I2C_TRANS_START_INT_RAW The raw interrupt bit for the I2C_TRANS_START_INT interrupt.

(R/SS/WTC)

I2C_NACK_INT_RAW The raw interrupt bit for the I2C_SLAVE_STRETCH_INT interrupt. (R/SS/WTC)

I2C_TXFIFO_OVF_INT_RAW The raw interrupt bit for the I2C_TXFIFO_OVF_INT interrupt.

(R/SS/WTC)

I2C_RXFIFO_UDF_INT_RAW The raw interrupt bit for the I2C_RXFIFO_UDF_INT interrupt.

(R/SS/WTC)

Continued on the next page...

Espressif Systems 444
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.20. I2C_INT_RAW_REG (0x0020)

Continued from the previous page...

I2C_SCL_ST_TO_INT_RAW The raw interrupt bit for the I2C_SCL_ST_TO_INT interrupt.

(R/SS/WTC)

I2C_SCL_MAIN_ST_TO_INT_RAW The raw interrupt bit for the I2C_SCL_MAIN_ST_TO_INT inter-

rupt. (R/SS/WTC)

I2C_DET_START_INT_RAW The raw interrupt bit for the I2C_DET_START_INT interrupt.

(R/SS/WTC)

Espressif Systems 445
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.21. I2C_INT_CLR_REG (0x0024)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

I2C
_D
ET
_S
TA
RT
_IN
T_
CL
R

0

15

I2C
_S
CL
_M
AI
N_
ST
_T
O_
IN
T_
CL
R

0

14

I2C
_S
CL
_S
T_
TO
_IN
T_
CL
R

0

13

I2C
_R
XF
IFO
_U
DF
_IN
T_
CL
R

0

12

I2C
_T
XF
IFO
_O
VF
_IN
T_
CL
R

0

11

I2C
_N
AC
K_
IN
T_
CL
R

0

10

I2C
_T
RA
NS
_S
TA
RT
_IN
T_
CL
R

0

9

I2C
_T
IM
E_
OU
T_
IN
T_
CL
R

0

8

I2C
_T
RA
NS
_C
OM

PL
ET
E_
IN
T_
CL
R

0

7

I2C
_M
ST
_T
XF
IFO
_U
DF
_IN
T_
CL
R

0

6

I2C
_A
RB
ITR
AT
IO
N_
LO
ST
_IN
T_
CL
R

0

5

I2C
_B
YT
E_
TR
AN
S_
DO
NE
_IN
T_
CL
R

0

4

I2C
_E
ND
_D
ET
EC
T_
IN
T_
CL
R

0

3

I2C
_R
XF
IFO
_O
VF
_IN
T_
CL
R

0

2

I2C
_T
XF
IFO
_W
M
_IN
T_
CL
R

0

1

I2C
_R
XF
IFO
_W
M
_IN
T_
CL
R

0

0

Reset

I2C_RXFIFO_WM_INT_CLR Set this bit to clear the I2C_RXFIFO_WM_INT interrupt. (WT)

I2C_TXFIFO_WM_INT_CLR Set this bit to clear the I2C_TXFIFO_WM_INT interrupt. (WT)

I2C_RXFIFO_OVF_INT_CLR Set this bit to clear the I2C_RXFIFO_OVF_INT interrupt. (WT)

I2C_END_DETECT_INT_CLR Set this bit to clear the I2C_END_DETECT_INT interrupt. (WT)

I2C_BYTE_TRANS_DONE_INT_CLR Set this bit to clear the I2C_END_DETECT_INT interrupt. (WT)

I2C_ARBITRATION_LOST_INT_CLR Set this bit to clear the I2C_ARBITRATION_LOST_INT inter-

rupt. (WT)

I2C_MST_TXFIFO_UDF_INT_CLR Set this bit to clear the I2C_TRANS_COMPLETE_INT interrupt.

(WT)

I2C_TRANS_COMPLETE_INT_CLR Set this bit to clear the I2C_TRANS_COMPLETE_INT interrupt.

(WT)

I2C_TIME_OUT_INT_CLR Set this bit to clear the I2C_TIME_OUT_INT interrupt. (WT)

I2C_TRANS_START_INT_CLR Set this bit to clear the I2C_TRANS_START_INT interrupt. (WT)

I2C_NACK_INT_CLR Set this bit to clear the I2C_SLAVE_STRETCH_INT interrupt. (WT)

I2C_TXFIFO_OVF_INT_CLR Set this bit to clear the I2C_TXFIFO_OVF_INT interrupt. (WT)

I2C_RXFIFO_UDF_INT_CLR Set this bit to clear the I2C_RXFIFO_UDF_INT interrupt. (WT)

I2C_SCL_ST_TO_INT_CLR Set this bit to clear the I2C_SCL_ST_TO_INT interrupt. (WT)

I2C_SCL_MAIN_ST_TO_INT_CLR Set this bit to clear the I2C_SCL_MAIN_ST_TO_INT interrupt.

(WT)

I2C_DET_START_INT_CLR Set this bit to clear the I2C_DET_START_INT interrupt. (WT)

Espressif Systems 446
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.22. I2C_INT_ENA_REG (0x0028)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

I2C
_D
ET
_S
TA
RT
_IN
T_
EN
A

0

15

I2C
_S
CL
_M
AI
N_
ST
_T
O_
IN
T_
EN
A

0

14

I2C
_S
CL
_S
T_
TO
_IN
T_
EN
A

0

13

I2C
_R
XF
IFO
_U
DF
_IN
T_
EN
A

0

12

I2C
_T
XF
IFO
_O
VF
_IN
T_
EN
A

0

11

I2C
_N
AC
K_
IN
T_
EN
A

0

10

I2C
_T
RA
NS
_S
TA
RT
_IN
T_
EN
A

0

9

I2C
_T
IM
E_
OU
T_
IN
T_
EN
A

0

8

I2C
_T
RA
NS
_C
OM

PL
ET
E_
IN
T_
EN
A

0

7

I2C
_M
ST
_T
XF
IFO
_U
DF
_IN
T_
EN
A

0

6

I2C
_A
RB
ITR
AT
IO
N_
LO
ST
_IN
T_
EN
A

0

5

I2C
_B
YT
E_
TR
AN
S_
DO
NE
_IN
T_
EN
A

0

4

I2C
_E
ND
_D
ET
EC
T_
IN
T_
EN
A

0

3

I2C
_R
XF
IFO
_O
VF
_IN
T_
EN
A

0

2

I2C
_T
XF
IFO
_W
M
_IN
T_
EN
A

0

1

I2C
_R
XF
IFO
_W
M
_IN
T_
EN
A

0

0

Reset

I2C_RXFIFO_WM_INT_ENA The interrupt enable bit for the I2C_RXFIFO_WM_INT interrupt. (R/W)

I2C_TXFIFO_WM_INT_ENA The interrupt enable bit for the I2C_TXFIFO_WM_INT interrupt. (R/W)

I2C_RXFIFO_OVF_INT_ENA The interrupt enable bit for the I2C_RXFIFO_OVF_INT interrupt. (R/W)

I2C_END_DETECT_INT_ENA The interrupt enable bit for the I2C_END_DETECT_INT interrupt. (R/W)

I2C_BYTE_TRANS_DONE_INT_ENA The interrupt enable bit for the I2C_BYTE_TRANS_DONE_INT

interrupt. (R/W)

I2C_ARBITRATION_LOST_INT_ENA The interrupt enable bit for the I2C_ARBITRATION_LOST_INT

interrupt. (R/W)

I2C_MST_TXFIFO_UDF_INT_ENA The interrupt enable bit for the I2C_TRANS_COMPLETE_INT in-

terrupt. (R/W)

I2C_TRANS_COMPLETE_INT_ENA The interrupt enable bit for the I2C_TRANS_COMPLETE_INT

interrupt. (R/W)

I2C_TIME_OUT_INT_ENA The interrupt enable bit for the I2C_TIME_OUT_INT interrupt. (R/W)

I2C_TRANS_START_INT_ENA The interrupt enable bit for the I2C_TRANS_START_INT interrupt.

(R/W)

I2C_NACK_INT_ENA The interrupt enable bit for the I2C_SLAVE_STRETCH_INT interrupt. (R/W)

I2C_TXFIFO_OVF_INT_ENA The interrupt enable bit for the I2C_TXFIFO_OVF_INT interrupt. (R/W)

I2C_RXFIFO_UDF_INT_ENA The interrupt enable bit for the I2C_RXFIFO_UDF_INT interrupt. (R/W)

I2C_SCL_ST_TO_INT_ENA The interrupt enable bit for the I2C_SCL_ST_TO_INT interrupt. (R/W)

I2C_SCL_MAIN_ST_TO_INT_ENA The interrupt enable bit for the I2C_SCL_MAIN_ST_TO_INT in-

terrupt. (R/W)

I2C_DET_START_INT_ENA The interrupt enable bit for the I2C_DET_START_INT interrupt. (R/W)

Espressif Systems 447
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.23. I2C_INT_STATUS_REG (0x002C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

I2C
_D
ET
_S
TA
RT
_IN
T_
ST

0

15

I2C
_S
CL
_M
AI
N_
ST
_T
O_
IN
T_
ST

0

14

I2C
_S
CL
_S
T_
TO
_IN
T_
ST

0

13

I2C
_R
XF
IFO
_U
DF
_IN
T_
ST

0

12

I2C
_T
XF
IFO
_O
VF
_IN
T_
ST

0

11

I2C
_N
AC
K_
IN
T_
ST

0

10

I2C
_T
RA
NS
_S
TA
RT
_IN
T_
ST

0

9

I2C
_T
IM
E_
OU
T_
IN
T_
ST

0

8

I2C
_T
RA
NS
_C
OM

PL
ET
E_
IN
T_
ST

0

7

I2C
_M
ST
_T
XF
IFO
_U
DF
_IN
T_
ST

0

6

I2C
_A
RB
ITR
AT
IO
N_
LO
ST
_IN
T_
ST

0

5

I2C
_B
YT
E_
TR
AN
S_
DO
NE
_IN
T_
ST

0

4

I2C
_E
ND
_D
ET
EC
T_
IN
T_
ST

0

3

I2C
_R
XF
IFO
_O
VF
_IN
T_
ST

0

2

I2C
_T
XF
IFO
_W
M
_IN
T_
ST

0

1

I2C
_R
XF
IFO
_W
M
_IN
T_
ST

0

0

Reset

I2C_RXFIFO_WM_INT_ST The masked interrupt status bit for the I2C_RXFIFO_WM_INT interrupt.

(RO)

I2C_TXFIFO_WM_INT_ST The masked interrupt status bit for the I2C_TXFIFO_WM_INT interrupt.

(RO)

I2C_RXFIFO_OVF_INT_ST The masked interrupt status bit for the I2C_RXFIFO_OVF_INT interrupt.

(RO)

I2C_END_DETECT_INT_ST The masked interrupt status bit for the I2C_END_DETECT_INT interrupt.

(RO)

I2C_BYTE_TRANS_DONE_INT_ST The masked interrupt status bit for the I2C_END_DETECT_INT

interrupt. (RO)

I2C_ARBITRATION_LOST_INT_ST The masked interrupt status bit for the

I2C_ARBITRATION_LOST_INT interrupt. (RO)

I2C_MST_TXFIFO_UDF_INT_ST The masked interrupt status bit for the

I2C_TRANS_COMPLETE_INT interrupt. (RO)

I2C_TRANS_COMPLETE_INT_ST The masked interrupt status bit for the

I2C_TRANS_COMPLETE_INT interrupt. (RO)

I2C_TIME_OUT_INT_ST The masked interrupt status bit for the I2C_TIME_OUT_INT interrupt. (RO)

I2C_TRANS_START_INT_ST The masked interrupt status bit for the I2C_TRANS_START_INT inter-

rupt. (RO)

I2C_NACK_INT_ST The masked interrupt status bit for the I2C_SLAVE_STRETCH_INT interrupt.

(RO)

I2C_TXFIFO_OVF_INT_ST The masked interrupt status bit for the I2C_TXFIFO_OVF_INT interrupt.

(RO)

I2C_RXFIFO_UDF_INT_ST The masked interrupt status bit for the I2C_RXFIFO_UDF_INT interrupt.

(RO)

Continued on the next page...

Espressif Systems 448
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.23. I2C_INT_STATUS_REG (0x002C)

Continued from the previous page...

I2C_SCL_ST_TO_INT_ST The masked interrupt status bit for the I2C_SCL_ST_TO_INT interrupt.

(RO)

I2C_SCL_MAIN_ST_TO_INT_ST Themasked interrupt status bit for the I2C_SCL_MAIN_ST_TO_INT

interrupt. (RO)

I2C_DET_START_INT_ST The masked interrupt status bit for the I2C_DET_START_INT interrupt.

(RO)

Register 21.24. I2C_COMD0_REG (0x0058)

I2C
_C
OM

M
AN
D0
_D
ON
E

0

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C
OM

M
AN
D0

0

13 0

Reset

I2C_COMMAND0 This is the content of command register 0. It consists of three parts:

• op_code is the command. 0: RSTART; 1: WRITE; 2: READ; 3: STOP; 4: END.

• Byte_num represents the number of bytes that need to be sent or received.

• ack_check_en, ack_exp and ack are used to control the ACK bit. For more information, see

Section 21.4.8.

(R/W)

I2C_COMMAND0_DONE When command 0 has been executed, this bit changes to high level.

(R/W/SS)

Espressif Systems 449
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.25. I2C_COMD1_REG (0x005C)

I2C
_C
OM

M
AN
D1
_D
ON
E

0

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C
OM

M
AN
D1

0

13 0

Reset

I2C_COMMAND1 This is the content of command register 1. It is the same as that of

I2C_COMMAND0. (R/W)

I2C_COMMAND1_DONE When command 1 has been executed, this bit changes to high level.

(R/W/SS)

Register 21.26. I2C_COMD2_REG (0x0060)

I2C
_C
OM

M
AN
D2
_D
ON
E

0

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C
OM

M
AN
D2

0

13 0

Reset

I2C_COMMAND2 This is the content of command register 2. It is the same as that of

I2C_COMMAND0. (R/W)

I2C_COMMAND2_DONE When command 2 has been executed, this bit changes to high Level.

(R/W/SS)

Register 21.27. I2C_COMD3_REG (0x0064)

I2C
_C
OM

M
AN
D3
_D
ON
E

0

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C
OM

M
AN
D3

0

13 0

Reset

I2C_COMMAND3 This is the content of command register 3. It is the same as that of

I2C_COMMAND0. (R/W)

I2C_COMMAND3_DONE When command 3 has been executed, this bit changes to high level.

(R/W/SS)

Espressif Systems 450
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.28. I2C_COMD4_REG (0x0068)

I2C
_C
OM

M
AN
D4
_D
ON
E

0

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C
OM

M
AN
D4

0

13 0

Reset

I2C_COMMAND4 This is the content of command register 4. It is the same as that of

I2C_COMMAND0. (R/W)

I2C_COMMAND4_DONE When command 4 has been executed, this bit changes to high level.

(R/W/SS)

Register 21.29. I2C_COMD5_REG (0x006C)

I2C
_C
OM

M
AN
D5
_D
ON
E

0

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C
OM

M
AN
D5

0

13 0

Reset

I2C_COMMAND5 This is the content of command register 5. It is the same as that of

I2C_COMMAND0. (R/W)

I2C_COMMAND5_DONE When command 5 has been executed, this bit changes to high level.

(R/W/SS)

Register 21.30. I2C_COMD6_REG (0x0070)

I2C
_C
OM

M
AN
D6
_D
ON
E

0

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C
OM

M
AN
D6

0

13 0

Reset

I2C_COMMAND6 This is the content of command register 6. It is the same as that of

I2C_COMMAND0. (R/W)

I2C_COMMAND6_DONE When command 6 has been executed, this bit changes to high level.

(R/W/SS)

Espressif Systems 451
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.31. I2C_COMD7_REG (0x0074)

I2C
_C
OM

M
AN
D7
_D
ON
E

0

31

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 14

I2C
_C
OM

M
AN
D7

0

13 0

Reset

I2C_COMMAND7 This is the content of command register 7. It is the same as that of

I2C_COMMAND0. (R/W)

I2C_COMMAND7_DONE When command 7 has been executed, this bit changes to high level.

(R/W/SS)

Register 21.32. I2C_TXFIFO_START_ADDR_REG (0x0100)

I2C
_T
XF
IFO
_S
TA
RT
_A
DD
R

0

31 0

Reset

I2C_TXFIFO_START_ADDR This is the start address of I2C TX FIFO. (HRO)

Register 21.33. I2C_RXFIFO_START_ADDR_REG (0x0180)

I2C
_R
XF
IFO
_S
TA
RT
_A
DD
R

0

31 0

Reset

I2C_RXFIFO_START_ADDR This is the start address of I2C RX FIFO. (HRO)

Espressif Systems 452
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

21 I2C Master Controller (I2C) GoBack

Register 21.34. I2C_DATE_REG (0x00F8)

I2C
_D
AT
E

0x20070201

31 0

Reset

I2C_DATE This is the version control register. (R/W)

Espressif Systems 453
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

22 LED PWM Controller (LEDC)

22.1 Overview

The LED PWM Controller is a peripheral designed to generate PWM signals for LED control. It has specialized

features such as automatic duty cycle fading. However, the LED PWM Controller can also be used to generate

PWM signals for other purposes.

22.2 Features

The LED PWM Controller has the following features:

• Six independent PWM generators (i.e. six channels)

• Maximum PWM duty cycle resolution: 14 bits

• Adjustable phase and duty cycle of PWM signal output

• PWM duty cycle dithering

• Automatic duty cycle fading — gradual increase/decrease of a PWM’s duty cycle without interference from

the processor. An interrupt will be generated upon fade completion

• PWM signal output in low-power mode (Light-sleep mode)

• Three clock sources that can be divided:

– PLL_60M_CLK

– FOSC_CLK

– XTAL_CLK

• Four independent timers that support fractional division

Figure 22­1. LED PWM Architecture

Espressif Systems 454
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Note that the four timers are identical regarding their features and operation. The following sections refer to the

timers collectively as Timerx (where x ranges from 0 to 3). Likewise, the six PWM generators are also identical in

features and operation, and thus are collectively referred to as PWMn (where n ranges from 0 to 5).

22.3 Functional Description

22.3.1 Architecture

Figure 22-1 shows the architecture of the LED PWM Controller.

The four timers can be independently configured (i.e. each has a configurable clock divider, and counter overflow

value) and each internally maintains a timebase counter (i.e. a counter that counts on cycles of a reference clock).

Each PWM generator selects one of the timers and uses the timer’s counter value as a reference to generate its

PWM signal.

Figure 22-2 illustrates the main functional blocks of the timer and the PWM generator.

Figure 22­2. LED PWM Generator Diagram

22.3.2 Timers

Each timer in LED PWM Controller internally maintains a timebase counter. Referring to Figure 22-2, this clock

signal used by the timebase counter is named ref_pulsex. All timers use the same clock source LEDC_CLKx,

which is then passed through a clock divider to generate ref_pulsex for the counter.

22.3.2.1 Clock Source

LED PWM registers configured by software are clocked by APB_CLK. For more information about APB_CLK, see

Chapter 6 Reset and Clock. To use the LED PWM pheripheral, the APB_CLK signal to the LED PWM has to be

enabled. The APB_CLK signal to LED PWM can be enabled by setting the SYSTEM_LEDC_CLK_EN field in the

register SYSTEM_PERIP_CLK_EN0_REG and be reset via software by setting the SYSTEM_LEDC_RST field in

the register SYSTEM_PERIP_RST_EN0_REG. For more information, please refer to Table 13-1 in Chapter 13

System Registers (SYSTEM).

Espressif Systems 455
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Timers in the LED PWM Controller choose their common clock source from one of the following clock signals:

PLL_60M_CLK, FOSC_CLK and XTAL_CLK (see Chapter 6 Reset and Clock for more details about each clock

signal). The procedure for selecting a clock source signal for LEDC_CLKx is described below:

• PLL_60M_CLK: Set LEDC_CLK_SEL[1:0] to 1

• FOSC_CLK: Set LEDC_CLK_SEL[1:0] to 2

• XTAL_CLK: Set LEDC_CLK_SEL[1:0] to 3

The LEDC_CLKx signal will then be passed through the clock divider.

22.3.2.2 Clock Divider Configuration

The LEDC_CLKx signal is passed through a clock divider to generate the ref_pulsex signal for the counter. The

frequency of ref_pulsex is equal to the frequency of LEDC_CLKx divided by the LEDC_CLK_DIV_TIMERx divider

value (see Figure 22-2).

The LEDC_CLK_DIV_TIMERx divider value is a fractional clock divider. Thus, it supports non-integer divider

values for finer granularity of available frequencies. LEDC_CLK_DIV_TIMERx is configured according to the

following equation.

LEDC_CLK_DIV _TIMERx = A+ B
256

• A corresponds to the most significant 10 bits of LEDC_CLK_DIV_TIMERx (i.e.

LEDC_TIMERx_CONF_REG[21:12])

• The fractional part B corresponds to the least significant 8 bits of LEDC_CLK_DIV_TIMERx

(i.e. LEDC_TIMERx_CONF_REG[11:4])

When the fractional part B is zero, LEDC_CLK_DIV_TIMERx is equivalent to an integer divider value (i.e. an

integer prescaler). In other words, a ref_pulsex clock pulse is generated after every A number of LEDC_CLKx

clock pulses.

However, when B is nonzero, LEDC_CLK_DIV_TIMERx becomes a non-integer divider value. The clock divider

implements non-integer frequency division by alternating between A and (A+1) LEDC_CLKx clock pulses per

ref_pulsex clock pulse. This will result in the average frequency of ref_pulsex clock pulse being the desired

frequency (i.e. the non-integer divided frequency). For every 256 ref_pulsex clock pulses:

• a number of B ref_pulsex clock pulses will have duration of (A+1) LEDC_CLKx clock pulses

• a number of (256-B) ref_pulsex clock pulses will have duration of A LEDC_CLKx clock pulses

• the ref_pulsex clock pulses with duration of (A+1) pulses are evenly distributed amongst those with duration

of A pulses

Figure 22-3 illustrates the relation between LEDC_CLKx clock pulses and ref_pulsex clock pulses when dividing

by a non-integer LEDC_CLK_DIV_TIMERx.

To change the timer’s clock divider value at runtime, first set the LEDC_CLK_DIV_TIMERx field, and then set the

LEDC_TIMERx_PARA_UP field to apply the new configuration. This will cause the newly configured values to

take effect upon the next overflow of the counter. The LEDC_TIMERx_PARA_UP field will be automatically

cleared by hardware.

Espressif Systems 456
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Figure 22­3. Frequency Division When LEDC_CLK_DIV_TIMERx is a Non­Integer Value

22.3.2.3 14­bit Counter

Each timer contains a 14-bit timebase counter that uses ref_pulsex as its reference clock (see Figure 22-2). The

LEDC_TIMERx_DUTY_RES field configures the overflow value of this 14-bit counter. Hence, the maximum

resolution of the PWM duty cycle is 14 bits. The counter counts up to (2LEDC_TIMERx_DUTY _RES − 1), overflows

and begins counting from 0 again. The counter’s value can be read, reset, and suspended by software.

The counter can trigger LEDC_TIMERx_OVF_INT interrupt (generated automatically by hardware without

configuration) every time the counter overflows. It can also be configured to trigger LEDC_OVF_CNT_CHn_INT

interrupt after the counter overflows (LEDC_OV F_NUM_CHn+ 1) times. To configure

LEDC_OVF_CNT_CHn_INT interrupt, please:

1. Configure LEDC_TIMER_SEL_CHn as the counter for the PWM generator

2. Enable the counter by setting LEDC_OVF_CNT_EN_CHn

3. Set LEDC_OVF_NUM_CHn to the number of counter overflows to generate an interrupt, minus 1

4. Enable the overflow interrupt by setting LEDC_OVF_CNT_CHn_INT_ENA

5. Set LEDC_TIMERx_DUTY_RES to enable the timer and wait for a LEDC_OVF_CNT_CHn_INT interrupt

Referring to Figure 22-2, the frequency of a PWM generator output signal (sig_outn) is dependent on the

frequency of the timer’s clock source (LEDC_CLKx), the clock divider value (LEDC_CLK_DIV_TIMERx), and the

range of the counter (LEDC_TIMERx_DUTY_RES):

fPWM =
fLEDC_CLKx

LEDC_CLK_DIV_TIMERx · 2LEDC_TIMERx_DUTY_RES

To change the overflow value at runtime, first set the LEDC_TIMERx_DUTY_RES field, and then set the

LEDC_TIMERx_PARA_UP field. This will cause the newly configured values to take effect upon the next overflow

of the counter. If LEDC_OVF_CNT_EN_CHn field is reconfigured, LEDC_PARA_UP_CHn should be set to apply

the new configuration. In summary, these configuration values need to be updated by setting

LEDC_TIMERx_PARA_UP or LEDC_PARA_UP_CHn. LEDC_TIMERx_PARA_UP and LEDC_PARA_UP_CHn will

be automatically cleared by hardware.

22.3.3 PWM Generators

To generate a PWM signal, a PWM generator (PWMn) selects a timer (Timerx). Each PWM generator can be

configured separately by setting LEDC_TIMER_SEL_CHn to use one of four timers to generate the PWM

Espressif Systems 457
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

output.

As shown in Figure 22-2, each PWM generator has a comparator and two multiplexers. A PWM generator

compares the timer’s 14-bit counter value (Timerx_cnt) to two trigger values Hpointn and Lpointn. When the

timer’s counter value is equal to Hpointn or Lpointn, the PWM signal is high or low, respectively, as described

below:

• If Timerx_cnt == Hpointn, sig_outn is 1.

• If Timerx_cnt == Lpointn, sig_outn is 0.

Figure 22-4 illustrates how Hpointn or Lpointn are used to generate a fixed duty cycle PWM output signal.

Figure 22­4. LED_PWM Output Signal Diagram

For a particular PWM generator (PWMn), its Hpointn is sampled from the LEDC_HPOINT_CHn field each time the

selected timer’s counter overflows. Likewise, Lpointn is also sampled on every counter overflow and is calculated

from the sum of the LEDC_DUTY_CHn[18:4] and LEDC_HPOINT_CHn fields. By setting Hpointn and Lpointn via

the LEDC_HPOINT_CHn and LEDC_DUTY_CHn[18:4] fields, the relative phase and duty cycle of the PWM

output can be set.

The PWM output signal (sig_outn) is enabled by setting LEDC_SIG_OUT_EN_CHn. When

LEDC_SIG_OUT_EN_CHn is cleared, PWM signal output is disabled, and the output signal (sig_outn) will output

a constant level as specified by LEDC_IDLE_LV_CHn.

The bits LEDC_DUTY_CHn[3:0] are used to dither the duty cycles of the PWM output signal (sig_outn) by

periodically altering the duty cycle of sig_outn. When LEDC_DUTY_CHn[3:0] is set to a non-zero value, then for

every 16 cycles of sig_outn, LEDC_DUTY_CHn[3:0] of those cycles will have PWM pulses that are one timer tick

longer than the other (16- LEDC_DUTY_CHn[3:0]) cycles. For instance, if LEDC_DUTY_CHn[18:4] is set to 10

and LEDC_DUTY_CHn[3:0] is set to 5, then 5 of 16 cycles will have a PWM pulse with a duty value of 11 and the

rest of the 16 cycles will have a PWM pulse with a duty value of 10. The average duty cycle after 16 cycles is

10.3125.

If fields LEDC_TIMER_SEL_CHn, LEDC_HPOINT_CHn, LEDC_DUTY_CHn[18:4] and LEDC_SIG_OUT_EN_CHn

are reconfigured, LEDC_PARA_UP_CHn must be set to apply the new configuration. This will cause the newly

configured values to take effect upon the next overflow of the counter. LEDC_PARA_UP_CHn field will be

automatically cleared by hardware.

Espressif Systems 458
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

22.3.4 Duty Cycle Fading

The PWM generators can fade the duty cycle of a PWM output signal (i.e. gradually change the duty cycle from

one value to another). If Duty Cycle Fading is enabled, the value of Lpointn will be incremented/decremented

after a fixed number of counter overflows has occured. Figure 22-5 illustrates Duty Cycle Fading.

Figure 22­5. Output Signal Diagram of Fading Duty Cycle

Duty Cycle Fading is configured using the following register fields:

• LEDC_DUTY_CHn is used to set the initial value of Lpointn.

• LEDC_DUTY_START_CHn will enable/disable duty cycle fading when set/cleared.

• LEDC_DUTY_CYCLE_CHn sets the number of counter overflow cycles for every Lpointn

increment/decrement. In other words, Lpointn will be incremented/decremented after

LEDC_DUTY_CYCLE_CHn counter overflows.

• LEDC_DUTY_INC_CHn configures whether Lpointn is incremented/decremented if set/cleared.

• LEDC_DUTY_SCALE_CHn sets the amount that Lpointn is incremented/decremented.

• LEDC_DUTY_NUM_CHn sets the maximum number of increments/decrements before duty cycle fading

stops.

If the fields LEDC_DUTY_CHn, LEDC_DUTY_START_CHn, LEDC_DUTY_CYCLE_CHn, LEDC_DUTY_INC_CHn,

LEDC_DUTY_SCALE_CHn, and LEDC_DUTY_NUM_CHn are reconfigured, LEDC_PARA_UP_CHn must be set

to apply the new configuration. After this field is set, the values for duty cycle fading will take effect at once.

LEDC_PARA_UP_CHn field will be automatically cleared by hardware.

22.3.5 Interrupts

• LEDC_OVF_CNT_CHn_INT: Triggered when the timer counter overflows for (LEDC_OVF_NUM_CHn + 1)

times and the register LEDC_OVF_CNT_EN_CHn is set to 1.

• LEDC_DUTY_CHNG_END_CHn_INT: Triggered when a fade on an LED PWM generator has finished.

• LEDC_TIMERx_OVF_INT: Triggered when an LED PWM timer has reached its maximum counter value.

Espressif Systems 459
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

22.4 Register Summary

The addresses in this section are relative to LED PWM Controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Name Description Address Access

Configuration Register

LEDC_CH0_CONF0_REG Configuration register 0 for channel 0 0x0000 varies

LEDC_CH0_CONF1_REG Configuration register 1 for channel 0 0x000C varies

LEDC_CH1_CONF0_REG Configuration register 0 for channel 1 0x0014 varies

LEDC_CH1_CONF1_REG Configuration register 1 for channel 1 0x0020 varies

LEDC_CH2_CONF0_REG Configuration register 0 for channel 2 0x0028 varies

LEDC_CH2_CONF1_REG Configuration register 1 for channel 2 0x0034 varies

LEDC_CH3_CONF0_REG Configuration register 0 for channel 3 0x003C varies

LEDC_CH3_CONF1_REG Configuration register 1 for channel 3 0x0048 varies

LEDC_CH4_CONF0_REG Configuration register 0 for channel 4 0x0050 varies

LEDC_CH4_CONF1_REG Configuration register 1 for channel 4 0x005C varies

LEDC_CH5_CONF0_REG Configuration register 0 for channel 5 0x0064 varies

LEDC_CH5_CONF1_REG Configuration register 1 for channel 5 0x0070 varies

LEDC_CONF_REG Global ledc configuration register 0x00D0 R/W

Hpoint Register

LEDC_CH0_HPOINT_REG High point register for channel 0 0x0004 R/W

LEDC_CH1_HPOINT_REG High point register for channel 1 0x0018 R/W

LEDC_CH2_HPOINT_REG High point register for channel 2 0x002C R/W

LEDC_CH3_HPOINT_REG High point register for channel 3 0x0040 R/W

LEDC_CH4_HPOINT_REG High point register for channel 4 0x0054 R/W

LEDC_CH5_HPOINT_REG High point register for channel 5 0x0068 R/W

Duty Cycle Register

LEDC_CH0_DUTY_REG Initial duty cycle for channel 0 0x0008 R/W

LEDC_CH0_DUTY_R_REG Current duty cycle for channel 0 0x0010 RO

LEDC_CH1_DUTY_REG Initial duty cycle for channel 1 0x001C R/W

LEDC_CH1_DUTY_R_REG Current duty cycle for channel 1 0x0024 RO

LEDC_CH2_DUTY_REG Initial duty cycle for channel 2 0x0030 R/W

LEDC_CH2_DUTY_R_REG Current duty cycle for channel 2 0x0038 RO

LEDC_CH3_DUTY_REG Initial duty cycle for channel 3 0x0044 R/W

LEDC_CH3_DUTY_R_REG Current duty cycle for channel 3 0x004C RO

LEDC_CH4_DUTY_REG Initial duty cycle for channel 4 0x0058 R/W

LEDC_CH4_DUTY_R_REG Current duty cycle for channel 4 0x0060 RO

LEDC_CH5_DUTY_REG Initial duty cycle for channel 5 0x006C R/W

LEDC_CH5_DUTY_R_REG Current duty cycle for channel 5 0x0074 RO

Timer Register

LEDC_TIMER0_CONF_REG Timer 0 configuration 0x00A0 varies

LEDC_TIMER0_VALUE_REG Timer 0 current counter value 0x00A4 RO

LEDC_TIMER1_CONF_REG Timer 1 configuration 0x00A8 varies

LEDC_TIMER1_VALUE_REG Timer 1 current counter value 0x00AC RO

Espressif Systems 460
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Name Description Address Access

LEDC_TIMER2_CONF_REG Timer 2 configuration 0x00B0 varies

LEDC_TIMER2_VALUE_REG Timer 2 current counter value 0x00B4 RO

LEDC_TIMER3_CONF_REG Timer 3 configuration 0x00B8 varies

LEDC_TIMER3_VALUE_REG Timer 3 current counter value 0x00BC RO

Interrupt Register

LEDC_INT_RAW_REG Raw interrupt status 0x00C0 R/WTC/SS

LEDC_INT_ST_REG Masked interrupt status 0x00C4 RO

LEDC_INT_ENA_REG Interrupt enable bits 0x00C8 R/W

LEDC_INT_CLR_REG Interrupt clear bits 0x00CC WT

Version Register

LEDC_DATE_REG Version control register 0x00FC R/W

Espressif Systems 461
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

22.5 Registers

The addresses in this section are relative to LED PWM Controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Register 22.1. LEDC_CHn_CONF0_REG (n: 0­5) (0x0000+0x14*n)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

LE
DC
_O
VF
_C
NT
_R
ES
ET
_C
Hn

0

16

LE
DC
_O
VF
_C
NT
_E
N_
CH
n

0

15

LE
DC
_O
VF
_N
UM
_C
Hn

0

14 5

LE
DC
_P
AR
A_
UP
_C
Hn

0

4

LE
DC
_ID
LE
_L
V_
CH
n

0

3

LE
DC
_S
IG
_O
UT
_E
N_
CH
n

0

2

LE
DC
_T
IM
ER
_S
EL
_C
Hn

0

1 0

Reset

LEDC_TIMER_SEL_CHn This field is used to select one of timers for channel n.

0: select Timer 0; 1: select Timer 1; 2: select Timer 2; 3: select Timer 3 (R/W)

LEDC_SIG_OUT_EN_CHn Set this bit to enable signal output on channel n. (R/W)

LEDC_IDLE_LV_CHn This bit is used to control the output value when channel n is inactive (when

LEDC_SIG_OUT_EN_CHn is 0). (R/W)

LEDC_PARA_UP_CHn This bit is used to update the listed fields for channel n, and will be automati-

cally cleared by hardware. (WT)

• LEDC_HPOINT_CHn

• LEDC_DUTY_START_CHn

• LEDC_SIG_OUT_EN_CHn

• LEDC_TIMER_SEL_CHn

• LEDC_DUTY_NUM_CHn

• LEDC_DUTY_CYCLE_CHn

• LEDC_DUTY_SCALE_CHn

• LEDC_DUTY_INC_CHn

• LEDC_OVF_CNT_EN_CHn

LEDC_OVF_NUM_CHn This field is used to configure the number of counter overflows to generate

an interrupt minus 1. The LEDC_OVF_CNT_CHn_INT interrupt will be triggered when channel n

overflows for (LEDC_OVF_NUM_CHn + 1) times. (R/W)

Continued on the next page...

Espressif Systems 462
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Register 22.1. LEDC_CHn_CONF0_REG (n: 0­5) (0x0000+0x14*n)

Continued from the previous page...

LEDC_OVF_CNT_EN_CHn This bit is used to enable the counter that counts the number of times

when the timer selected by channel n overflows. (R/W)

LEDC_OVF_CNT_RESET_CHn Set this bit to reset the timer-overflow counter of channel n. (WT)

Register 22.2. LEDC_CHn_CONF1_REG (n: 0­5) (0x000C+0x14*n)

LE
DC
_D
UT
Y_
ST
AR
T_
CH
n

0

31

LE
DC
_D
UT
Y_
IN
C_
CH
n

1

30

LE
DC
_D
UT
Y_
NU
M
_C
Hn

0x0

29 20

LE
DC
_D
UT
Y_
CY
CL
E_
CH
n

0x0

19 10

LE
DC
_D
UT
Y_
SC
AL
E_
CH
n

0x0

9 0

Reset

LEDC_DUTY_SCALE_CHn This field configures the step size of the duty cycle change during fading.

(R/W)

LEDC_DUTY_CYCLE_CHn The duty will change every LEDC_DUTY_CYCLE_CHn on channel n.

(R/W)

LEDC_DUTY_NUM_CHn This field sets the maximum number of increments/decrements before duty

cycle fading stops. (R/W)

LEDC_DUTY_INC_CHn This bit determines whether the duty cycle of the output signal on channel n

increases or decreases. 1: Increase; 0: Decrease. (R/W)

LEDC_DUTY_START_CHn If this bit is set to 1, other configured fields in LEDC_CHn_CONF1_REG

will take effect upon the next timer overflow.(R/W/SC)

Espressif Systems 463
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Register 22.3. LEDC_CONF_REG (0x00D0)

LE
DC
_C
LK
_E
N

0

31

(re
se
rve
d)

0 0

30 2

LE
DC
_C
LK
_S
EL

0

1 0

Reset

LEDC_CLK_SEL This field is used to select the common clock source for all the 4 timers.

1: PLL_60M_CLK; 2: FOSC_CLK; 3: XTAL_CLK. (R/W)

LEDC_CLK_EN This bit is used to control the clock.

1: Force clock on for register. 0: Support clock only when application writes registers. (R/W)

Register 22.4. LEDC_CHn_HPOINT_REG (n: 0­5) (0x0004+0x14*n)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

LE
DC
_H
PO
IN
T_
CH
n

0x00

13 0

Reset

LEDC_HPOINT_CHn The output value changes to high when the selected timer for this channel has

reached the value specified by this field. (R/W)

Register 22.5. LEDC_CHn_DUTY_REG (n: 0­5) (0x0008+0x14*n)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

LE
DC
_D
UT
Y_
CH
n

0x000

18 0

Reset

LEDC_DUTY_CHn This field is used to change the output duty by controlling the Lpoint. The output

value turns to low when the selected timer for this channel has reached the Lpoint. (R/W)

Espressif Systems 464
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Register 22.6. LEDC_CHn_DUTY_R_REG (n: 0­5) (0x0010+0x14*n)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0

31 19

LE
DC
_D
UT
Y_
R_
CH
n

0x000

18 0

Reset

LEDC_DUTY_R_CHn This field stores the current duty cycle of the output signal on channel n. (RO)

Register 22.7. LEDC_TIMERx_CONF_REG (x: 0­3) (0x00A0+0x8*x)

(re
se
rve
d)

0 0 0 0 0 0

31 26

LE
DC
_T
IM
ER
x_
PA
RA
_U
P

0

25

(re
se
rve
d)

0

24

LE
DC
_T
IM
ER
x_
RS
T

1

23

LE
DC
_T
IM
ER
x_
PA
US
E

0

22

LE
DC
_C
LK
_D
IV_
TIM

ER
x

0x000

21 4

LE
DC
_T
IM
ER
x_
DU
TY
_R
ES

0x0

3 0

Reset

LEDC_TIMERx_DUTY_RES This field is used to control the range of the counter in timer x. (R/W)

LEDC_CLK_DIV_TIMERx This field is used to configure the divisor for the divider in timer x. The least

significant eight bits represent the fractional part. (R/W)

LEDC_TIMERx_PAUSE This bit is used to suspend the counter in timer x. (R/W)

LEDC_TIMERx_RST This bit is used to reset timer x. The counter will show 0 after reset. (R/W)

LEDC_TIMERx_PARA_UP Set this bit to update LEDC_CLK_DIV_TIMERx and

LEDC_TIMERx_DUTY_RES. (WT)

Register 22.8. LEDC_TIMERx_VALUE_REG (x: 0­3) (0x00A4+0x8*x)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 14

LE
DC
_T
IM
ER
x_
CN
T

0

13 0

Reset

LEDC_TIMERx_CNT This field stores the current counter value of timer x. (RO)

Espressif Systems 465
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Register 22.9. LEDC_INT_RAW_REG (0x00C0)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

LE
DC
_O
VF
_C
NT
_C
H5
_IN
T_
RA
W

0

15

LE
DC
_O
VF
_C
NT
_C
H4
_IN
T_
RA
W

0

14

LE
DC
_O
VF
_C
NT
_C
H3
_IN
T_
RA
W

0

13

LE
DC
_O
VF
_C
NT
_C
H2
_IN
T_
RA
W

0

12

LE
DC
_O
VF
_C
NT
_C
H1
_IN
T_
RA
W

0

11

LE
DC
_O
VF
_C
NT
_C
H0
_IN
T_
RA
W

0

10

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H5
_IN
T_
RA
W

0

9

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H4
_IN
T_
RA
W

0

8

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H3
_IN
T_
RA
W

0

7

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H2
_IN
T_
RA
W

0

6

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H1
_IN
T_
RA
W

0

5

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H0
_IN
T_
RA
W

0

4

LE
DC
_T
IM
ER
3_
OV
F_
IN
T_
RA
W

0

3

LE
DC
_T
IM
ER
2_
OV
F_
IN
T_
RA
W

0

2

LE
DC
_T
IM
ER
1_
OV
F_
IN
T_
RA
W

0

1

LE
DC
_T
IM
ER
0_
OV
F_
IN
T_
RA
W

0

0

Reset

LEDC_TIMERx_OVF_INT_RAW The raw interrupt status of LEDC_TIMERx_OVF_INT. (R/WTC/SS)

LEDC_DUTY_CHNG_END_CHn_INT_RAW The raw interrupt status of

LEDC_DUTY_CHNG_END_CHn_INT. (R/WTC/SS)

LEDC_OVF_CNT_CHn_INT_RAW The raw interrupt status of LEDC_OVF_CNT_CHn_INT.

(R/WTC/SS)

Register 22.10. LEDC_INT_ST_REG (0x00C4)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

LE
DC
_O
VF
_C
NT
_C
H5
_IN
T_
ST

0

15

LE
DC
_O
VF
_C
NT
_C
H4
_IN
T_
ST

0

14

LE
DC
_O
VF
_C
NT
_C
H3
_IN
T_
ST

0

13

LE
DC
_O
VF
_C
NT
_C
H2
_IN
T_
ST

0

12

LE
DC
_O
VF
_C
NT
_C
H1
_IN
T_
ST

0

11

LE
DC
_O
VF
_C
NT
_C
H0
_IN
T_
ST

0

10

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H5
_IN
T_
ST

0

9

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H4
_IN
T_
ST

0

8

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H3
_IN
T_
ST

0

7

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H2
_IN
T_
ST

0

6

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H1
_IN
T_
ST

0

5

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H0
_IN
T_
ST

0

4

LE
DC
_T
IM
ER
3_
OV
F_
IN
T_
ST

0

3

LE
DC
_T
IM
ER
2_
OV
F_
IN
T_
ST

0

2

LE
DC
_T
IM
ER
1_
OV
F_
IN
T_
ST

0

1

LE
DC
_T
IM
ER
0_
OV
F_
IN
T_
ST

0

0

Reset

LEDC_TIMERx_OVF_INT_ST This is the masked interrupt status bit for the LEDC_TIMERx_OVF_INT

interrupt when LEDC_TIMERx_OVF_INT_ENA is set to 1. (RO)

LEDC_DUTY_CHNG_END_CHn_INT_ST This is the masked interrupt status bit for the

LEDC_DUTY_CHNG_END_CHn_INT interrupt when LEDC_DUTY_CHNG_END_CHn_INT_ENA is

set to 1. (RO)

LEDC_OVF_CNT_CHn_INT_ST This is the masked interrupt status bit for the

LEDC_OVF_CNT_CHn_INT interrupt when LEDC_OVF_CNT_CHn_INT_ENA is set to 1. (RO)

Espressif Systems 466
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Register 22.11. LEDC_INT_ENA_REG (0x00C8)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

LE
DC
_O
VF
_C
NT
_C
H5
_IN
T_
EN
A

0

15

LE
DC
_O
VF
_C
NT
_C
H4
_IN
T_
EN
A

0

14

LE
DC
_O
VF
_C
NT
_C
H3
_IN
T_
EN
A

0

13

LE
DC
_O
VF
_C
NT
_C
H2
_IN
T_
EN
A

0

12

LE
DC
_O
VF
_C
NT
_C
H1
_IN
T_
EN
A

0

11

LE
DC
_O
VF
_C
NT
_C
H0
_IN
T_
EN
A

0

10

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H5
_IN
T_
EN
A

0

9

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H4
_IN
T_
EN
A

0

8

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H3
_IN
T_
EN
A

0

7

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H2
_IN
T_
EN
A

0

6

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H1
_IN
T_
EN
A

0

5

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H0
_IN
T_
EN
A

0

4

LE
DC
_T
IM
ER
3_
OV
F_
IN
T_
EN
A

0

3

LE
DC
_T
IM
ER
2_
OV
F_
IN
T_
EN
A

0

2

LE
DC
_T
IM
ER
1_
OV
F_
IN
T_
EN
A

0

1

LE
DC
_T
IM
ER
0_
OV
F_
IN
T_
EN
A

0

0

Reset

LEDC_TIMERx_OVF_INT_ENA The interrupt enable bit for the LEDC_TIMERx_OVF_INT interrupt.

(R/W)

LEDC_DUTY_CHNG_END_CHn_INT_ENA The interrupt enable bit for the

LEDC_DUTY_CHNG_END_CHn_INT interrupt. (R/W)

LEDC_OVF_CNT_CHn_INT_ENA The interrupt enable bit for the LEDC_OVF_CNT_CHn_INT inter-

rupt. (R/W)

Register 22.12. LEDC_INT_CLR_REG (0x00CC)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

LE
DC
_O
VF
_C
NT
_C
H5
_IN
T_
CL
R

0

15

LE
DC
_O
VF
_C
NT
_C
H4
_IN
T_
CL
R

0

14

LE
DC
_O
VF
_C
NT
_C
H3
_IN
T_
CL
R

0

13

LE
DC
_O
VF
_C
NT
_C
H2
_IN
T_
CL
R

0

12

LE
DC
_O
VF
_C
NT
_C
H1
_IN
T_
CL
R

0

11

LE
DC
_O
VF
_C
NT
_C
H0
_IN
T_
CL
R

0

10

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H5
_IN
T_
CL
R

0

9

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H4
_IN
T_
CL
R

0

8

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H3
_IN
T_
CL
R

0

7

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H2
_IN
T_
CL
R

0

6

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H1
_IN
T_
CL
R

0

5

LE
DC
_D
UT
Y_
CH
NG
_E
ND
_C
H0
_IN
T_
CL
R

0

4

LE
DC
_T
IM
ER
3_
OV
F_
IN
T_
CL
R

0

3

LE
DC
_T
IM
ER
2_
OV
F_
IN
T_
CL
R

0

2

LE
DC
_T
IM
ER
1_
OV
F_
IN
T_
CL
R

0

1

LE
DC
_T
IM
ER
0_
OV
F_
IN
T_
CL
R

0

0

Reset

LEDC_TIMERx_OVF_INT_CLR Set this bit to clear the LEDC_TIMERx_OVF_INT interrupt. (WT)

LEDC_DUTY_CHNG_END_CHn_INT_CLR Set this bit to clear the

LEDC_DUTY_CHNG_END_CHn_INT interrupt. (WT)

LEDC_OVF_CNT_CHn_INT_CLR Set this bit to clear the LEDC_OVF_CNT_CHn_INT interrupt. (WT)

Espressif Systems 467
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

22 LED PWM Controller (LEDC) GoBack

Register 22.13. LEDC_DATE_REG (0x00FC)

LE
DC
_L
ED
C_
DA
TE

0x19061700

31 0

Reset

LEDC_LEDC_DATE This is the version control register. (R/W)

Espressif Systems 468
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

23 On­Chip Sensor and Analog Signal Processing

23.1 Overview

ESP8684 provides the following analog signal processing peripheral and on-chip sensor:

• One 12-bit Successive Approximation ADC (SAR ADC) for measuring analog signals from five channels.

• One temperature sensor for measuring the internal temperature of the ESP8684 chip.

23.2 SAR ADC

23.2.1 Overview

ESP8684 integrates one 12-bit SAR ADC, which is able to measure analog signals from up to five pins. The SAR

ADC is managed by DIG ADC controller, which drives Digital_Reader to sample channel voltages of SAR ADC.

This controller supports multi-channel scanning and threshold monitoring.

23.2.2 Features

SAR ADC has the following features:

• One ADC Reader module (Digital_Reader) to read sampling results

• 12-bit sampling resolution

• Able to sample the analog voltages from up to five pins

• One DIG ADC controller

– Provides separate control modules for one-time sampling and multi-channel scanning

– Supports one-time sampling and multi-channel scanning working simultaneously

– User-defined scanning sequence in multi-channel scanning mode

– Provides two filters with configurable filter coefficient

– Supports threshold monitoring

23.2.3 Functional Description

The major components of SAR ADC and their interconnections are shown in Figure 23-1.

Espressif Systems 469
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

—>: data flow; —>: clock signal; —>: ADC control signal

Figure 23­1. SAR ADC Function Overview

As shown in Figure 23-1, the SAR ADC module consists of the following components:

• SAR ADC: measures voltages from up to five channels.

• Clock management: selects clock sources and their dividers:

– Clock sources: can be APB_CLK or XTAL_CLK.

– Divided Clocks:

* SAR_CLK: operating clock for SAR ADC and Digital_Reader. Note that the divider (sar_div) of

SAR_CLK must be no less than 2.

* ADC_CTRL_CLK: operating clock for DIG ADC FSM.

• Digital_Reader (driven by DIG ADC FSM): reads data from SAR ADC.

• DIG ADC FSM: generates the signals required throughout the ADC sampling process.

• Threshold monitorx: threshold monitor 1 and threshold monitor 2. The monitorx will trigger an interrupt

when the sampled value is greater than the pre-set high threshold or less than the pre-set low threshold.

The following sections describe the individual components in details.

23.2.3.1 Input Signals

In order to sample an analog signal, the SAR ADC must first select the analog pin to measure via an internal

multiplexer. A summary of all the analog signals that may be sent to the SAR ADC module for processing are

presented in Table 23-1.

Espressif Systems 470
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Table 23­1. SAR ADC Input Signals

Signal Channel

GPIO0 0

GPIO1 1

GPIO2 2

GPIO3 3

GPIO4 4

23.2.3.2 ADC Conversion and Attenuation

When the SAR ADC converts an analog voltage, the resolution (12-bit) of the conversion spans voltage range

from 0 mV to Vref . Vref is the SAR ADC’s internal reference voltage. The output value of the conversion (data) is

mapped to analog voltage Vdata using the following formula:

Vdata =
Vref

4095
× data

In order to convert voltages larger than Vref , input signals can be attenuated before being input into the SAR

ADCs. The attenuation can be configured to 0 dB, 2.5 dB, 6 dB, and 10 dB.

23.2.3.3 DIG ADC Controller

The clock of the DIG ADC controller is quite fast, thus the sample rate is high. For more information, see Section

ADC Characteristics in ESP8684 Series Datasheet.

This controller supports:

• up to 12-bit sampling resolution

• one-time sampling triggered by software

• multi-channel scanning triggered by the timer

The configuration of a one-time sampling triggered by the software is as follows:

• Set APB_SARADC1_ONETIME_SAMPLE to enable the one-time sampling function of the SAR ADC.

• Configure APB_SARADC_ONETIME_CHANNEL to select one channel to sample.

• Configure APB_SARADC_ONETIME_ATTEN to set attenuation.

• Configure APB_SARADC_ONETIME_START to start this one-time sampling.

• On completion of sampling, APB_SARADC_ADC1_DONE_INT_RAW interrupt is generated. Software can

use this interrupt to initiate reading of the sampled values from APB_SARADC_ADC1_DATA.

If the timer-triggered multi-channel scanning is selected, follow the configuration below. Note that in this mode,

the scan sequence is performed according to the configuration entered into pattern table.

• Configure APB_SARADC_TIMER_TARGET to set the trigger target for DIG ADC timer. When the timer

counting reaches two times of the pre-configured cycle number, a sampling operation is triggered. For the

working clock of the timer, see Section 23.2.3.4.

• Configure APB_SARADC_TIMER_EN to enable the timer.

Espressif Systems 471
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/sites/default/files/documentation/esp8684_datasheet_en.pdf
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

• When the timer times out, DIG ADC FSM starts sampling according to the pattern table;

• An interrupt is triggered once the scanning is completed. The software needs to read the sampled

data from corresponding registers, otherwise, the sampled data will be directly discarded after

passing through the threshold monitor.

23.2.3.4 DIG ADC Clock

Two clocks can be used as the working clock of DIG ADC controller, depending on the configuration of

APB_SARADC_CLK_SEL:

• 1: Select the clock (ADC_CTRL_CLK) divided from XTAL_CLK.

• 0: Select APB_CLK.

If ADC_CTRL_CLK is selected, users can configure the divider by APB_SARADC_CLKM_DIV_NUM.

Note that due to speed limits of SAR ADC, the operating clock of Digital_Reader and SAR ADC is SAR_CLK, the

frequency of which affects the sampling precision. The lower the frequency, the higher the precision. SAR_CLK is

divided from ADC_CTRL_CLK. The divider coefficient is configured by APB_SARADC_SAR_CLK_DIV.

The ADC needs 25 SAR_CLK clock cycles per sample, so the maximum sampling rate is limited by the

SAR_CLK frequency. For more information about clocks, see Chapter 6 Reset and Clock.

23.2.3.5 DIG ADC FSM

Overview

Figure 23-2 shows the diagram of DIG ADC FSM.

Figure 23­2. Diagram of DIG ADC FSM

Wherein:

• Timer: a dedicated timer for DIG ADC controller, to generate a sample_start signal.

Espressif Systems 472
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

• pr: the pointer to pattern table entries. FSM sends out corresponding signals based on the configuration of

the pattern table entry that the pointer points to.

The execution process is as follows:

• Configure APB_SARADC_TIMER_EN to enable the DIG ADC timer. The timeout event of this timer triggers

a sample_start signal. This signal drives the FSM module to start sampling.

• When the FSM module receives the sample_start signal, it starts the following operations:

– Power up SAR ADC.

– Select SAR ADC as the working ADC, configure the ADC channel and attenuation, based on the

pattern table entry that the current pr points to.

– According to the configuration information, output the corresponding en_pad and atten signals to the

analog side.

– Initiate the sar_start signal and start sampling.

• When the FSM receives the reader_done signal from ADC Reader (Digital_Reader), it will

– stop sampling,

– the data is discarded after passing through the filter and the threshold monitor, see Figure 23-1),

– update the pattern table pointer (pr) and wait for the next sampling. Note that if the pointer (pr) is

smaller than APB_SARADC_SAR_PATT_LEN (table_length), then pr = pr + 1, otherwise, pr is cleared.

Pattern Table

There is one pattern table in the controller, consisting of the APB_SARADC_SAR_PATT_TAB1_REG and

APB_SARADC_SAR_PATT_TAB2_REG registers, see Figure 23-3 and Figure 23-4:

(re
se
rve
d)

0 0 0 0 0 0 0 0

31 24

cm
d3

0x0000

23 18

cm
d2

0x0000

17 12

cm
d1

0x0000

11 6

cm
d0

0x0000

5 0

cmd x represents pattern table entries. x here is the index, 0 ~ 3.

Figure 23­3. APB_SARADC_SAR_PATT_TAB1_REG and Pattern Table Entry 0 ­ Entry 3

(re
se
rve
d)

0 0 0 0 0 0 0 0

31 24

cm
d7

0x0000

23 18

cm
d6

0x0000

17 12

cm
d5

0x0000

11 6

cm
d4

0x0000

5 0

cmd x represents pattern table entries. x here is the index, 4 ~ 7.

Figure 23­4. APB_SARADC_SAR_PATT_TAB2_REG and Pattern Table Entry 4 ­ Entry 7

Each register consists of four 6-bit pattern table entries. Each entry is composed of three fields that contain

working ADC, ADC channel and attenuation information, as shown in Table 23-5.

Espressif Systems 473
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

sa
r_s
el

x

5

ch
_s
el

xx

4 2

att
en

x x

1 0

Figure 23­5. Pattern Table Entry

atten Attenuation. 0: 0 dB; 1: 2.5 dB; 2: 6 dB; 3: 10 dB.

ch_sel ADC channel, see Table 23-1.

sar_sel Working ADC. 0: SAR ARC. ESP8684 provides only one SAR ADC, therefore, this value is

always 0.

Configuration of multi­channel scanning

In this example, two channels are selected for multi-channel scanning:

• Channel 2, with the attenuation of 10 dB

• Channel 0, with the attenuation of 2.5 dB

The detailed configuration is as follows:

• Configure the first pattern table entry (cmd0):

sa
r_s
el

0

5

ch
_s
el

2

4 2

att
en

3

1 0

Figure 23­6. cmd0 Configuration

atten write the value of 3 to this field, to set the attenuation to 10 dB.

ch_sel write the value of 2 to this field, to select channel 2 (see Table 23-1).

sar_sel Configure this bit to 0.

• Configure the second pattern table entry (cmd1):

sa
r_s
el

0

5

ch
_s
el

0

4 2

att
en

1

1 0

Figure 23­7. cmd1 Configuration

atten write the value of 1 to this field, to set the attenuation to 2.5 dB.

ch_sel write the value of 0 to this field, to select channel 0 (see Table 23-1).

sar_sel Configure this bit to 0.

• Configure APB_SARADC_SAR_PATT_LEN to 1, i.e., set pattern table length to (this value + 1 = 2). Then

pattern table entries cmd0 and cmd1 will be used.

• Enable the timer, then DIG ADC controller starts scanning the two channels in cycles, as configured in the

pattern table entries.

Espressif Systems 474
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

23.2.3.6 ADC Filters

The DIG ADC controller provides two filters for automatic filtering of sampled ADC data. Both filters can be

configured to any channel of the SAR ADC and then filter the sampled data for the target channel. The filter’s

formula is shown below:

datacur =
(k − 1)dataprev

k
+

datain
k

− 0.5

• datacur: the filtered data value.

• datain: the sampled data value from the ADC.

• dataprev: the last filtered data value.

• k: the filter coefficient.

The filters are configured as follows:

• Configure APB_SARADC_FILTER_CHANNELx to select the ADC channel for filter x;

• Configure APB_SARADC_FILTER_FACTORx to set the coefficient for filter x;

Note that x is used here as the placeholder of filter index. 0: filter 0; 1: filter 1.

23.2.3.7 Threshold Monitoring

DIG ADC controller contains two threshold monitors that can be configured to monitor on any channel of the SAR

ADC. A high threshold interrupt is triggered when the ADC sample value is larger than the pre-configured high

threshold, and a low threshold interrupt is triggered if the sample value is lower than the pre-configured low

threshold.

The configuration of threshold monitoring is as follows:

• Set APB_SARADC_THRESx_EN to enable threshold monitor x.

• Configure APB_SARADC_THRESx_LOW to set a low threshold;

• Configure APB_SARADC_THRESx_HIGH to set a high threshold;

• Configure APB_SARADC_THRESx_CHANNEL to select the channel to monitor.

Note that x is used here as the placeholder of monitor index. 0: monitor 0; 1: monitor 1.

23.3 Temperature Sensor

23.3.1 Overview

ESP8684 provides a temperature sensor to monitor temperature changes inside the chip in real time.

23.3.2 Features

The temperature sensor has the following features:

• Supports software triggering and, once triggered, the data can be read continuously

• Configurable temperature offset based on the environment, to improve the accuracy

• Adjustable measurement range

Espressif Systems 475
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

23.3.3 Functional Description

The temperature sensor can be started by software as follows:

• Set APB_SARADC_TSENS_PU to power up the temperature sensor;

• Wait for APB_SARADC_TSENS_XPD_WAIT clock cycles till the reset of temperature sensor is released, the

sensor starts measuring the temperature;

• If this is the first time to start the temperature sensor, wait the sensor to get started up (about 100 µs).

Then, the temperature data can be read continuously from APB_SARADC_TSENS_OUT.

The actual temperature (°C) can be obtained by converting the output of temperature sensor via the following

formula:

T (°C) = 0.4386 ∗ V ALUE–27.88 ∗ offset–20.52

VALUE in the formula is the output of the temperature sensor, and the offset is determined by the temperature

offset TSENS_DAC. Users can set I2C register I2C_SARADC_TSENS_ADC to configure TSENS_DAC according

to the actual environment (the temperature range) and Table 23-2.

Table 23­2. Temperature Offset

TSENS_DAC Temperature Offset (°C) Measurement Range (°C)

5 -2 50 ~ 125

13 or 7 -1 20 ~ 100

15 0 -10 ~ 80

11 or 14 1 -30 ~ 50

10 2 -40 ~ 20

23.4 Interrupts

• APB_SARADC_ADC1_DONE_INT: triggered when SAR ADC completes one data conversion.

• APB_SARADC_THRESx_HIGH_INT: triggered when the sampling value is higher than the high threshold of

monitor x.

• APB_SARADC_THRESx_LOW_INT: triggered when the sampling value is lower than the low threshold of

monitor x.

23.5 Register Summary

The addresses in this section are relative to the ADC controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Name Description Address Access

Configuration registers

APB_SARADC_CTRL_REG Configuration register for SAR ADC

FSM

0x0000 R/W

APB_SARADC_CTRL2_REG Configuration register for SAR ADC

FSM sampling

0x0004 R/W

APB_SARADC_FILTER_CTRL1_REG Configuration register 1 for filter 0x0008 R/W

Espressif Systems 476
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Name Description Address Access

APB_SARADC_SAR_PATT_TAB1_REG Pattern table register 1 0x0018 R/W

APB_SARADC_SAR_PATT_TAB2_REG Pattern table register 2 0x001C R/W

APB_SARADC_ONETIME_SAMPLE_REG Configuration register for one-time

sampling

0x0020 R/W

APB_SARADC_FILTER_CTRL0_REG Configuration register 0 for filter 0x0028 R/W

APB_SARADC_1_DATA_STATUS_REG SAR ADC sampling data register 0x002C RO

APB_SARADC_THRES0_CTRL_REG Sampling threshold control register

0

0x0034 R/W

APB_SARADC_THRES1_CTRL_REG Sampling threshold control register

1

0x0038 R/W

APB_SARADC_THRES_CTRL_REG Sampling threshold enable register 0x003C R/W

APB_SARADC_INT_ENA_REG Enable register of SAR ADC inter-

rupts

0x0040 R/W

APB_SARADC_INT_RAW_REG Raw register of SAR ADC inter-

rupts

0x0044 RO

APB_SARADC_INT_ST_REG State register of SAR ADC inter-

rupts

0x0048 RO

APB_SARADC_INT_CLR_REG Clear register of SAR ADC inter-

rupts

0x004C WO

APB_SARADC_DMA_CONF_REG DMA configuration register for SAR

ADC

0x0050 R/W

APB_SARADC_APB_ADC_CLKM_CONF_REG SAR ADC clock control register 0x0054 R/W

APB_SARADC_APB_TSENS_CTRL_REG Temperature sensor control regis-

ter 1

0x0058 varies

APB_SARADC_APB_TSENS_CTRL2_REG Temperature sensor control regis-

ter 2

0x005C R/W

Version register

APB_SARADC_APB_CTRL_DATE_REG Version control register 0x03FC R/W

23.6 Register

The addresses in this section are relative to the ADC controller base address provided in Table 3-3 in Chapter 3

System and Memory.

Espressif Systems 477
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.1. APB_SARADC_CTRL_REG (0x0000)

(re
se
rve
d)

1

31 30

(re
se
rve
d)

0

29

AP
B_
SA
RA
DC
_X
PD
_S
AR
_F
OR
CE

0

28 27

(re
se
rve
d)

0 0 0

26 24

AP
B_
SA
RA
DC
_S
AR
_P
AT
T_
P_
CL
EA
R

0

23

(re
se
rve
d)

0 0 0 0 0

22 18

AP
B_
SA
RA
DC
_S
AR
_P
AT
T_
LE
N

7

17 15

AP
B_
SA
RA
DC
_S
AR
_C
LK
_D
IV

4

14 7

AP
B_
SA
RA
DC
_S
AR
_C
LK
_G
AT
ED

1

6

(re
se
rve
d)

0 0 0 0

5 2

AP
B_
SA
RA
DC
_S
TA
RT

0

1

AP
B_
SA
RA
DC
_S
TA
RT
_F
OR
CE

0

0

Reset

APB_SARADC_START_FORCE 0: select FSM to start SAR ADC. 1: select software to start SAR

ADC. (R/W)

APB_SARADC_START Write 1 here to start the SAR ADC by software. Valid only when

APB_SARADC_START_FORCE = 1. (R/W)

APB_SARADC_SAR_CLK_GATED 0: SAR ADC clock is always on. 1: SAR ADC clock is turned off

when SAR ADC is in idle. (R/W)

APB_SARADC_SAR_CLK_DIV SAR ADC clock divider. This value should be no less than 2. (R/W)

APB_SARADC_SAR_PATT_LEN Configure how many pattern table entries will be used. If this field

is set to 1, then pattern table entries (cmd0) and (cmd1) will be used. (R/W)

APB_SARADC_SAR_PATT_P_CLEAR Clear the pointer of pattern table entry for DIG ADC controller.

(R/W)

APB_SARADC_XPD_SAR_FORCE Force select XPD SAR. (R/W)

Espressif Systems 478
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.2. APB_SARADC_CTRL2_REG (0x0004)

(re
se
rve
d)

0 0 0 0 0 0 0

31 25

AP
B_
SA
RA
DC
_T
IM
ER
_E
N

0

24

AP
B_
SA
RA
DC
_T
IM
ER
_T
AR
GE
T

10

23 12

(re
se
rve
d)

0

11 10

AP
B_
SA
RA
DC
_S
AR
1_
IN
V

0

9

AP
B_
SA
RA
DC
_M
AX
_M
EA
S_
NU
M

255

8 1

AP
B_
SA
RA
DC
_M
EA
S_
NU
M
_L
IM
IT

0

0

Reset

APB_SARADC_MEAS_NUM_LIMIT Enable the limitation of SAR ADC maximum conversion times.

Valid only when the timer is used to control SAR ADC. (R/W)

APB_SARADC_MAX_MEAS_NUM The SAR ADC maximum conversion times. (R/W)

APB_SARADC_SAR1_INV Write 1 here to invert the data of SAR ADC. (R/W)

APB_SARADC_TIMER_TARGET Set SAR ADC timer target. (R/W)

APB_SARADC_TIMER_EN Enable SAR ADC timer trigger. (R/W)

Register 23.3. APB_SARADC_FILTER_CTRL1_REG (0x0008)

AP
B_
SA
RA
DC
_F
ILT
ER
_F
AC
TO
R0

0

31 29

AP
B_
SA
RA
DC
_F
ILT
ER
_F
AC
TO
R1

0

28 26

(re
se
rve
d)

0 0

25 0

Reset

APB_SARADC_FILTER_FACTOR1 The filter coefficient for SAR ADC filter 1. (R/W)

APB_SARADC_FILTER_FACTOR0 The filter coefficient for SAR ADC filter 0. (R/W)

Espressif Systems 479
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.4. APB_SARADC_SAR_PATT_TAB1_REG (0x0018)

(re
se
rve
d)

0 0 0 0 0 0 0 0

31 24

AP
B_
SA
RA
DC
_S
AR
_P
AT
T_
TA
B1

0xffffff

23 0

Reset

APB_SARADC_SAR_PATT_TAB1 Pattern table entries 0 ~ 3 (each entry is six bits). (R/W)

Register 23.5. APB_SARADC_SAR_PATT_TAB2_REG (0x001C)

(re
se
rve
d)

0 0 0 0 0 0 0 0

31 24

AP
B_
SA
RA
DC
_S
AR
_P
AT
T_
TA
B2

0xffffff

23 0

Reset

APB_SARADC_SAR_PATT_TAB2 Pattern table entries 4 ~ 7 (each entry is six bits). (R/W)

Register 23.6. APB_SARADC_ONETIME_SAMPLE_REG (0x0020)

AP
B_
SA
RA
DC
1_
ON
ET
IM
E_
SA
M
PL
E

0

31

(re
se
rve
d)

0

30

AP
B_
SA
RA
DC
_O
NE
TIM

E_
ST
AR
T

0

29

AP
B_
SA
RA
DC
_O
NE
TIM

E_
CH
AN
NE
L

13

28 25

AP
B_
SA
RA
DC
_O
NE
TIM

E_
AT
TE
N

0

24 23

(re
se
rve
d)

0 0

22 0

Reset

APB_SARADC_ONETIME_ATTEN Configure the attenuation for a one-time sampling. (R/W)

APB_SARADC_ONETIME_CHANNEL Configure the channel for a one-time sampling. (R/W)

APB_SARADC_ONETIME_START Start SAR ADC one-time sampling. (R/W)

APB_SARADC1_ONETIME_SAMPLE Enable SAR ADC one-time sampling. (R/W)

Espressif Systems 480
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.7. APB_SARADC_FILTER_CTRL0_REG (0x0028)

AP
B_
SA
RA
DC
_F
ILT
ER
_R
ES
ET

0

31

(re
se
rve
d)

0 0 0 0 0

30 26

AP
B_
SA
RA
DC
_F
ILT
ER
_C
HA
NN
EL
0

13

25 22

AP
B_
SA
RA
DC
_F
ILT
ER
_C
HA
NN
EL
1

13

21 18

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0

Reset

APB_SARADC_FILTER_CHANNEL1 The filter channel for SAR ADC filter 1. (R/W)

APB_SARADC_FILTER_CHANNEL0 The filter channel for SAR ADC filter 0. (R/W)

APB_SARADC_FILTER_RESET Reset SAR ADC filter. (R/W)

Register 23.8. APB_SARADC_1_DATA_STATUS_REG (0x002C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 17

AP
B_
SA
RA
DC
_A
PB
_S
AR
AD
C1
_D
AT
A

0

16 0

Reset

APB_SARADC_ADC1_DATA SAR ADC conversion data. (RO)

Register 23.9. APB_SARADC_THRES0_CTRL_REG (0x0034)

(re
se
rve
d)

0

31

AP
B_
SA
RA
DC
_T
HR
ES
0_
LO
W

0

30 18

AP
B_
SA
RA
DC
_T
HR
ES
0_
HI
GH

0x1fff

17 5

(re
se
rve
d)

0

4

AP
B_
SA
RA
DC
_T
HR
ES
0_
CH
AN
NE
L

13

3 0

Reset

APB_SARADC_THRES0_CHANNEL The channel for SAR ADC monitor 0. (R/W)

APB_SARADC_THRES0_HIGH The high threshold for SAR ADC monitor 0. (R/W)

APB_SARADC_THRES0_LOW The low threshold for SAR ADC monitor 0. (R/W)

Espressif Systems 481
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.10. APB_SARADC_THRES1_CTRL_REG (0x0038)

(re
se
rve
d)

0

31

AP
B_
SA
RA
DC
_T
HR
ES
1_
LO
W

0

30 18

AP
B_
SA
RA
DC
_T
HR
ES
1_
HI
GH

0x1fff

17 5

(re
se
rve
d)

0

4

AP
B_
SA
RA
DC
_T
HR
ES
1_
CH
AN
NE
L

13

3 0

Reset

APB_SARADC_THRES1_CHANNEL The channel for SAR ADC monitor 1. (R/W)

APB_SARADC_THRES1_HIGH The high threshold for SAR ADC monitor 1. (R/W)

APB_SARADC_THRES1_LOW The low threshold for SAR ADC monitor 1. (R/W)

Register 23.11. APB_SARADC_THRES_CTRL_REG (0x003C)

AP
B_
SA
RA
DC
_T
HR
ES
0_
EN

0

31

AP
B_
SA
RA
DC
_T
HR
ES
1_
EN

0

30

(re
se
rve
d)

0 0

29 0

Reset

APB_SARADC_THRES1_EN Enable threshold monitor 1. (R/W)

APB_SARADC_THRES0_EN Enable threshold monitor 0. (R/W)

Espressif Systems 482
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.12. APB_SARADC_INT_ENA_REG (0x0040)

AP
B_
SA
RA
DC
_A
DC
1_
DO
NE
_IN
T_
EN
A

0

31

(re
se
rve
d)

0

30

AP
B_
SA
RA
DC
_T
HR
ES
0_
HI
GH
_IN
T_
EN
A

0

29

AP
B_
SA
RA
DC
_T
HR
ES
1_
HI
GH
_IN
T_
EN
A

0

28

AP
B_
SA
RA
DC
_T
HR
ES
0_
LO
W
_IN
T_
EN
A

0

27

AP
B_
SA
RA
DC
_T
HR
ES
1_
LO
W
_IN
T_
EN
A

0

26

(re
se
rve
d)

0 0

25 0

Reset

APB_SARADC_THRES1_LOW_INT_ENA Enable bit of APB_SARADC_THRES1_LOW_INT inter-

rupt. (R/W)

APB_SARADC_THRES0_LOW_INT_ENA Enable bit of APB_SARADC_THRES0_LOW_INT inter-

rupt. (R/W)

APB_SARADC_THRES1_HIGH_INT_ENA Enable bit of APB_SARADC_THRES1_HIGH_INT inter-

rupt. (R/W)

APB_SARADC_THRES0_HIGH_INT_ENA Enable bit of APB_SARADC_THRES0_HIGH_INT inter-

rupt. (R/W)

APB_SARADC_ADC1_DONE_INT_ENA Enable bit of APB_SARADC_ADC1_DONE_INT interrupt.

(R/W)

Espressif Systems 483
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.13. APB_SARADC_INT_RAW_REG (0x0044)

AP
B_
SA
RA
DC
_A
DC
1_
DO
NE
_IN
T_
RA
W

0

31

(re
se
rve
d)

0

30

AP
B_
SA
RA
DC
_T
HR
ES
0_
HI
GH
_IN
T_
RA
W

0

29

AP
B_
SA
RA
DC
_T
HR
ES
1_
HI
GH
_IN
T_
RA
W

0

28

AP
B_
SA
RA
DC
_T
HR
ES
0_
LO
W
_IN
T_
RA
W

0

27

AP
B_
SA
RA
DC
_T
HR
ES
1_
LO
W
_IN
T_
RA
W

0

26

(re
se
rve
d)

0 0

25 0

Reset

APB_SARADC_THRES1_LOW_INT_RAW Raw bit of APB_SARADC_THRES1_LOW_INT interrupt.

(RO)

APB_SARADC_THRES0_LOW_INT_RAW Raw bit of APB_SARADC_THRES0_LOW_INT interrupt.

(RO)

APB_SARADC_THRES1_HIGH_INT_RAW Raw bit of APB_SARADC_THRES1_HIGH_INT interrupt.

(RO)

APB_SARADC_THRES0_HIGH_INT_RAW Raw bit of APB_SARADC_THRES0_HIGH_INT interrupt.

(RO)

APB_SARADC_ADC1_DONE_INT_RAW Raw bit of APB_SARADC_ADC1_DONE_INT interrupt.

(RO)

Espressif Systems 484
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.14. APB_SARADC_INT_ST_REG (0x0048)

AP
B_
SA
RA
DC
_A
DC
1_
DO
NE
_IN
T_
ST

0

31

(re
se
rve
d)

0

30

AP
B_
SA
RA
DC
_T
HR
ES
0_
HI
GH
_IN
T_
ST

0

29

AP
B_
SA
RA
DC
_T
HR
ES
1_
HI
GH
_IN
T_
ST

0

28

AP
B_
SA
RA
DC
_T
HR
ES
0_
LO
W
_IN
T_
ST

0

27

AP
B_
SA
RA
DC
_T
HR
ES
1_
LO
W
_IN
T_
ST

0

26

(re
se
rve
d)

0 0

25 0

Reset

APB_SARADC_THRES1_LOW_INT_ST Status of APB_SARADC_THRES1_LOW_INT interrupt.

(RO)

APB_SARADC_THRES0_LOW_INT_ST Status of APB_SARADC_THRES0_LOW_INT interrupt.

(RO)

APB_SARADC_THRES1_HIGH_INT_ST Status of APB_SARADC_THRES1_HIGH_INT interrupt.

(RO)

APB_SARADC_THRES0_HIGH_INT_ST Status of APB_SARADC_THRES0_HIGH_INT interrupt.

(RO)

APB_SARADC_ADC1_DONE_INT_ST Status of APB_SARADC_ADC1_DONE_INT interrupt. (RO)

Espressif Systems 485
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.15. APB_SARADC_INT_CLR_REG (0x004C)

AP
B_
SA
RA
DC
_A
DC
1_
DO
NE
_IN
T_
CL
R

0

31

(re
se
rve
d)

0

30

AP
B_
SA
RA
DC
_T
HR
ES
0_
HI
GH
_IN
T_
CL
R

0

29

AP
B_
SA
RA
DC
_T
HR
ES
1_
HI
GH
_IN
T_
CL
R

0

28

AP
B_
SA
RA
DC
_T
HR
ES
0_
LO
W
_IN
T_
CL
R

0

27

AP
B_
SA
RA
DC
_T
HR
ES
1_
LO
W
_IN
T_
CL
R

0

26

(re
se
rve
d)

0 0

25 0

Reset

APB_SARADC_THRES1_LOW_INT_CLR Clear bit of APB_SARADC_THRES1_LOW_INT interrupt.

(WO)

APB_SARADC_THRES0_LOW_INT_CLR Clear bit of APB_SARADC_THRES0_LOW_INT interrupt.

(WO)

APB_SARADC_THRES1_HIGH_INT_CLR Clear bit of APB_SARADC_THRES1_HIGH_INT interrupt.

(WO)

APB_SARADC_THRES0_HIGH_INT_CLR Clear bit of APB_SARADC_THRES0_HIGH_INT interrupt.

(WO)

APB_SARADC_ADC1_DONE_INT_CLR Clear bit of APB_SARADC_ADC1_DONE_INT interrupt.

(WO)

Register 23.16. APB_SARADC_DMA_CONF_REG (0x0050)

AP
B_
SA
RA
DC
_A
PB
_A
DC
_T
RA
NS

0

31

AP
B_
SA
RA
DC
_A
PB
_A
DC
_R
ES
ET
_F
SM

0

30

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 16

(re
se
rve
d)

255

15 0

Reset

APB_SARADC_APB_ADC_RESET_FSM Reset DIG ADC controller status. (R/W)

APB_SARADC_APB_ADC_TRANS ESP8684 does not support DMA. This bit must be set to 0. Data

is discarded after passing through the filter and the threshold monitor. (R/W)

Espressif Systems 486
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.17. APB_SARADC_APB_ADC_CLKM_CONF_REG (0x0054)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0

31 23

AP
B_
SA
RA
DC
_C
LK
_S
EL

0

22 21

(re
se
rve
d)

0

20

AP
B_
SA
RA
DC
_C
LK
M
_D
IV_
A

0x0

19 14

AP
B_
SA
RA
DC
_C
LK
M
_D
IV_
B

0x0

13 8

AP
B_
SA
RA
DC
_C
LK
M
_D
IV_
NU
M

4

7 0

Reset

APB_SARADC_CLKM_DIV_NUM The integer part of ADC clock divider. Divider value =

APB_SARADC_CLKM_DIV_NUM + APB_SARADC_CLKM_DIV_B/APB_SARADC_CLKM_DIV_A.

(R/W)

APB_SARADC_CLKM_DIV_B The numerator value of fractional clock divider. (R/W)

APB_SARADC_CLKM_DIV_A The denominator value of fractional clock divider. (R/W)

APB_SARADC_CLK_SEL 0: Use APB_CLK as clock source, 1: use divided-down XTAL_CLK as

clock source. (R/W)

Register 23.18. APB_SARADC_APB_TSENS_CTRL_REG (0x0058)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0

31 23

AP
B_
SA
RA
DC
_T
SE
NS
_P
U

0

22

AP
B_
SA
RA
DC
_T
SE
NS
_C
LK
_D
IV

6

21 14

AP
B_
SA
RA
DC
_T
SE
NS
_IN
_IN
V

0

13

(re
se
rve
d)

0 0 0 0 0

12 8

AP
B_
SA
RA
DC
_T
SE
NS
_O
UT

0x0

7 0

Reset

APB_SARADC_TSENS_OUT Temperature sensor data out. (RO)

APB_SARADC_TSENS_IN_INV Invert temperature sensor input value. (R/W)

APB_SARADC_TSENS_CLK_DIV Temperature sensor clock divider. (R/W)

APB_SARADC_TSENS_PU Temperature sensor power up. (R/W)

Espressif Systems 487
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

23 On-Chip Sensor and Analog Signal Processing GoBack

Register 23.19. APB_SARADC_APB_TSENS_CTRL2_REG (0x005C)

(re
se
rve
d)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16

AP
B_
SA
RA
DC
_T
SE
NS
_C
LK
_S
EL

0

15

(re
se
rve
d)

1

14

(re
se
rve
d)

0 0

13 12

AP
B_
SA
RA
DC
_T
SE
NS
_X
PD
_W
AI
T

0 x 2

11 0

Reset

APB_SARADC_TSENS_XPD_WAIT The wait time before temperature sensor is powered up. (R/W)

APB_SARADC_TSENS_CLK_SEL Choose working clock for temperature sensor. 0:

RC_FAST_CLK. 1: XTAL_CLK. (R/W)

Register 23.20. APB_SARADC_APB_CTRL_DATE_REG (0x03FC)

AP
B_
SA
RA
DC
_D
AT
E

0x02107210

31 0

Reset

APB_SARADC_DATE Version register. (R/W)

Espressif Systems 488
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

24 Related Documentation and Resources GoBack

24 Related Documentation and Resources

Related Documentation

• ESP8684 Series Datasheet – Specifications of the ESP8684 hardware.

• ESP8684 Hardware Design Guidelines – Guidelines on how to integrate the ESP8684 into your hardware product.

• Certificates

https://espressif.com/en/support/documents/certificates

• Documentation Updates and Update Notification Subscription

https://espressif.com/en/support/download/documents

Developer Zone

• ESP-IDF Programming Guide for ESP8684 – Extensive documentation for the ESP-IDF development framework.

• ESP-IDF and other development frameworks on GitHub.

https://github.com/espressif

• ESP32 BBS Forum – Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions,

share knowledge, explore ideas, and help solve problems with fellow engineers.

https://esp32.com/

• The ESP Journal – Best Practices, Articles, and Notes from Espressif folks.

https://blog.espressif.com/

• See the tabs SDKs and Demos, Apps, Tools, AT Firmware.

https://espressif.com/en/support/download/sdks-demos

Products

• ESP8684 Series SoCs – Browse through all ESP8684 SoCs.

https://espressif.com/en/products/socs?id=ESP8684

• ESP8684 Series Modules – Browse through all ESP8684-based modules.

https://espressif.com/en/products/modules?id=ESP8684

• ESP8684 Series DevKits – Browse through all ESP8684-based devkits.

https://espressif.com/en/products/devkits?id=ESP8684

• ESP Product Selector – Find an Espressif hardware product suitable for your needs by comparing or applying filters.

https://products.espressif.com/#/product-selector?language=en

Contact Us

• See the tabs Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples

(Online stores), Become Our Supplier, Comments & Suggestions.

https://espressif.com/en/contact-us/sales-questions

Espressif Systems 489
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://espressif.com/documentation/esp8684_datasheet_en.pdf
https://espressif.com/documentation/esp8684_hardware_design_guidelines_en.pdf
https://espressif.com/en/support/documents/certificates?keys=&field_product_value%5B%5D=ESP8684
https://espressif.com/en/support/download/documents
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c2/get-started/index.html
https://github.com/espressif
https://esp32.com/
https://blog.espressif.com/
https://espressif.com/en/support/download/sdks-demos
https://espressif.com/en/products/socs?id=ESP8684
https://espressif.com/en/products/modules?id=ESP8684
https://espressif.com/en/products/devkits?id=ESP8684
https://products.espressif.com/#/product-selector?language=en
https://espressif.com/en/contact-us/sales-questions
https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Glossary

Glossary

Abbreviations for Peripherals

AES AES (Advanced Encryption Standard) Accelerator

BOOTCTRL Chip Boot Control

DS Digital Signature

DMA DMA (Direct Memory Access) Controller

eFuse eFuse Controller

HMAC HMAC (Hash-based Message Authentication Code) Accelerator

I2C I2C (Inter-Integrated Circuit) Controller

I2S I2S (Inter-IC Sound) Controller

LEDC LED Control PWM (Pulse Width Modulation)

MCPWM Motor Control PWM (Pulse Width Modulation)

PCNT Pulse Count Controller

RNG Random Number Generator

RSA RSA (Rivest Shamir Adleman) Accelerator

SDHOST SD/MMC Host Controller

SHA SHA (Secure Hash Algorithm) Accelerator

SPI SPI (Serial Peripheral Interface) Controller

SYSTIMER System Timer

TIMG Timer Group

TWAI Two-wire Automotive Interface

UART UART (Universal Asynchronous Receiver-Transmitter) Controller

ULP Coprocessor Ultra-low-power Coprocessor

USB OTG USB On-The-Go

WDT Watchdog Timers

Abbreviations for Registers

ISO Isolation. When a module is power down, its output pins will be stuck in unknown

state (some middle voltage). ”ISO” registers will control to isolate its output pins

to be a determined value, so it will not affect the status of other working modules

which are not power down.

NMI Non-maskable interrupt.

REG Register.

R/W Read/write. Software can read and write to these bits.

RO Read-only. Software can only read these bits.

SYSREG System Registers

WO Write-only. Software can only write to these bits.

Espressif Systems 490
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

Revision History

Revision History

Date Version Release notes

2022-10-27 v0.3

Added the following chapters:

• 2 GDMA Controller (GDMA)

• 9 Low-power Management (RTC_CNTL)

• 20 SPI Controller (SPI)

• 23 On-Chip Sensor and Analog Signal Processing

Updated the following chapters:

• 18 Random Number Generator (RNG)

• 14 Debug Assistant (ASSIST_DEBUG)

2022-07-14 v0.2

Added the following chapters:

• 4 eFuse Controller (eFuse)

• 15 ECC Hardware Accelerator (ECC)

Updated the following chapters:

• 1 ESP-RISC-V CPU

• 5 IO MUX and GPIO Matrix (GPIO, IO MUX)

• 6 Reset and Clock

2022-05-18 v0.1 Preliminary release

Espressif Systems 491
Submit Documentation Feedback

ESP8684 TRM (Pre-release v0.3)

https://www.espressif.com/en/company/documents/documentation_feedback?docId=5732§ions=&version=0.3

PRELIMINARY

www.espressif.com

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY’S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO
WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information
in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any
intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a
registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property
of their respective owners, and are hereby acknowledged.

Copyright © 2022 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

https://www.espressif.com/

	1 ESP-RISC-V CPU
	1.1 Overview
	1.2 Features
	1.3 Address Map
	1.4 Configuration and Status Registers (CSRs)
	1.4.1 Register Summary
	1.4.2 Register Description

	1.5 Interrupt Controller
	1.5.1 Features
	1.5.2 Functional Description
	1.5.3 Suggested Operation
	1.5.4 Register Summary
	1.5.5 Register Description

	1.6 Debug
	1.6.1 Overview
	1.6.2 Features
	1.6.3 Functional Description
	1.6.4 Register Summary
	1.6.5 Register Description

	1.7 Hardware Trigger
	1.7.1 Features
	1.7.2 Functional Description
	1.7.3 Trigger Execution Flow
	1.7.4 Register Summary
	1.7.5 Register Description

	1.8 Memory Protection
	1.8.1 Overview
	1.8.2 Features
	1.8.3 Functional Description
	1.8.4 Register Summary
	1.8.5 Register Description

	2 GDMA Controller (GDMA)
	2.1 Overview
	2.2 Features
	2.3 Architecture
	2.4 Functional Description
	2.4.1 Data Transfer Between Peripheral and Memory
	2.4.2 Memory-to-Memory Data Transfer
	2.4.3 Linked List
	2.4.4 Enabling GDMA
	2.4.5 Linked List Reading Process
	2.4.6 EOF
	2.4.7 Accessing Internal RAM
	2.4.8 Arbitration

	2.5 GDMA Interrupts
	2.6 Programming Procedures
	2.6.1 Programming Procedure for GDMA Clock and Reset
	2.6.2 Programming Procedure for GDMA's Transmit Channel
	2.6.3 Programming Procedure for GDMA's Receive Channel
	2.6.4 Programming Procedure for Memory-to-Memory Transfer

	2.7 Register Summary
	2.8 Registers

	3 System and Memory
	3.1 Overview
	3.2 Features
	3.3 Functional Description
	3.3.1 Address Mapping
	3.3.2 Internal Memory
	3.3.3 External Memory
	3.3.4 GDMA Address Space
	3.3.5 Modules/Peripherals

	4 eFuse Controller (eFuse)
	4.1 Overview
	4.2 Features
	4.3 Functional Description
	4.3.1 Structure
	4.3.2 Programming of Parameters
	4.3.3 User Read of Parameters
	4.3.4 eFuse VDDQ Timing
	4.3.5 Parameters Used by Hardware Modules
	4.3.6 Interrupts

	4.4 Register Summary
	4.5 Registers

	5 IO MUX and GPIO Matrix (GPIO, IO MUX)
	5.1 Overview
	5.2 Features
	5.3 Architectural Overview
	5.4 Peripheral Input via GPIO Matrix
	5.4.1 Overview
	5.4.2 Signal Synchronization
	5.4.3 Functional Description
	5.4.4 Simple GPIO Input

	5.5 Peripheral Output via GPIO Matrix
	5.5.1 Overview
	5.5.2 Functional Description
	5.5.3 Simple GPIO Output

	5.6 Direct Input and Output via IO MUX
	5.6.1 Overview
	5.6.2 Functional Description

	5.7 Analog Functions of GPIO Pins
	5.8 Pin Functions in Light-sleep
	5.9 Pin Hold Feature
	5.10 Power Supplies and Management of GPIO Pins
	5.10.1 Power Supplies of GPIO Pins
	5.10.2 Power Supply Management

	5.11 Peripheral Signal List
	5.12 IO MUX Functions List
	5.13 Analog Functions List
	5.14 Register Summary
	5.14.1 GPIO Matrix Register Summary
	5.14.2 IO MUX Register Summary

	5.15 Registers
	5.15.1 GPIO Matrix Registers
	5.15.2 IO MUX Registers

	6 Reset and Clock
	6.1 Reset
	6.1.1 Overview
	6.1.2 Architectural Overview
	6.1.3 Features
	6.1.4 Functional Description

	6.2 Clock
	6.2.1 Overview
	6.2.2 Architectural Overview
	6.2.3 Features
	6.2.4 Functional Description

	7 Chip Boot Control
	7.1 Overview
	7.2 Features
	7.3 Functional Description
	7.3.1 Default Configuration
	7.3.2 Boot Mode Control
	7.3.3 ROM Code Printing Control

	8 Interrupt Matrix (INTMTRX)
	8.1 Overview
	8.2 Features
	8.3 Functional Description
	8.3.1 Peripheral Interrupt Sources
	8.3.2 CPU Interrupts
	8.3.3 Allocate Peripheral Interrupt Source to CPU Interrupt
	8.3.4 Query Current Interrupt Status of Peripheral Interrupt Source

	8.4 Register Summary
	8.5 Registers

	9 Low-power Management (RTC_CNTL)
	9.1 Introduction
	9.2 Features
	9.3 Functional Description
	9.3.1 Power Management Unit (PMU)
	9.3.2 Low-Power Clocks
	9.3.3 Timers
	9.3.4 Voltage Regulators

	9.4 Brownout Detector
	9.5 Power Modes Management
	9.5.1 Power Domains
	9.5.2 Pre-defined Power Modes
	9.5.3 Wakeup Sources
	9.5.4 Reject Sleep

	9.6 Register Summary
	9.7 Registers

	10 System Timer (SYSTIMER)
	10.1 Overview
	10.2 Features
	10.3 Clock Source Selection
	10.4 Functional Description
	10.4.1 Counter
	10.4.2 Comparator and Alarm
	10.4.3 Synchronization Operation
	10.4.4 Interrupt

	10.5 Programming Procedure
	10.5.1 Read Current Count Value
	10.5.2 Configure One-Time Alarm in Target Mode
	10.5.3 Configure Periodic Alarms in Period Mode
	10.5.4 Update After Deep-sleep and Light-sleep

	10.6 Register Summary
	10.7 Registers

	11 Timer Group (TIMG)
	11.1 Overview
	11.2 Features
	11.3 Functional Description
	11.3.1 16-bit Prescaler and Clock Selection
	11.3.2 54-bit Time-base Counter
	11.3.3 Alarm Generation
	11.3.4 Timer Reload
	11.3.5 SLOW_CLK Frequency Calculation
	11.3.6 Interrupts

	11.4 Configuration and Usage
	11.4.1 Timer as a Simple Clock
	11.4.2 Timer as One-shot Alarm
	11.4.3 Timer as Periodic Alarm
	11.4.4 SLOW_CLK Frequency Calculation

	11.5 Register Summary
	11.6 Registers

	12 Watchdog Timers (WDT)
	12.1 Overview
	12.2 Digital Watchdog Timers
	12.2.1 Features
	12.2.2 Functional Description

	12.3 Super Watchdog
	12.3.1 Features
	12.3.2 Super Watchdog Controller

	12.4 Interrupts
	12.5 Registers

	13 System Registers (SYSTEM)
	13.1 Overview
	13.2 Features
	13.3 Function Description
	13.3.1 System and Memory Registers
	13.3.2 Clock Registers
	13.3.3 Interrupt Signal Registers
	13.3.4 Peripheral Clock Gating and Reset Registers

	13.4 Register Summary
	13.5 Registers

	14 Debug Assistant (ASSIST_DEBUG)
	14.1 Overview
	14.2 Features
	14.3 Functional Description
	14.3.1 SP Monitoring
	14.3.2 PC Logging
	14.3.3 CPU Debugging Status Logging

	14.4 Recommended Operation
	14.4.1 SP Monitoring
	14.4.2 PC Logging Configuration Process

	14.5 Register Summary
	14.6 Registers

	15 ECC Hardware Accelerator (ECC)
	15.1 Introduction
	15.2 Features
	15.3 Terminology
	15.3.1 ECC Basics
	15.3.2 ECC Definitions

	15.4 Function Description
	15.4.1 Key Size
	15.4.2 Working Modes

	15.5 Clocks and Resets
	15.6 Interrupts
	15.7 Programming Procedures
	15.8 Register Summary
	15.9 Registers

	16 SHA Accelerator (SHA)
	16.1 Introduction
	16.2 Features
	16.3 Working Modes
	16.4 Function Description
	16.4.1 Preprocessing
	16.4.2 Hash Operation
	16.4.3 Message Digest
	16.4.4 Interrupt

	16.5 Register Summary
	16.6 Registers

	17 External Memory Encryption and Decryption (XTS_AES)
	17.1 Overview
	17.2 Features
	17.3 Module Structure
	17.4 Functional Description
	17.4.1 XTS Algorithm
	17.4.2 Key
	17.4.3 Target Memory Space
	17.4.4 Data Writing
	17.4.5 Manual Encryption Block
	17.4.6 Auto Decryption Block

	17.5 Software Process
	17.6 Register Summary
	17.7 Registers

	18 Random Number Generator (RNG)
	18.1 Introduction
	18.2 Features
	18.3 Functional Description
	18.4 Programming Procedure
	18.5 Register Summary
	18.6 Register

	19 UART Controller (UART)
	19.1 Overview
	19.2 Features
	19.3 UART Architecture
	19.4 Functional Description
	19.4.1 Clock and Reset
	19.4.2 UART RAM
	19.4.3 Baud Rate Generation and Detection
	19.4.4 UART Data Frame
	19.4.5 RS485
	19.4.6 IrDA
	19.4.7 Wake-up
	19.4.8 Flow Control
	19.4.9 UART Interrupts

	19.5 Programming Procedures
	19.5.1 Register Type
	19.5.2 Detailed Steps

	19.6 Register Summary
	19.7 Registers

	20 SPI Controller (SPI)
	20.1 Overview
	20.2 Glossary
	20.3 Features
	20.4 Architectural Overview
	20.5 Functional Description
	20.5.1 Data Modes
	20.5.2 Introduction to FSPI Bus Signals
	20.5.3 Bit Read/Write Order Control
	20.5.4 Transfer Modes
	20.5.5 CPU-Controlled Data Transfer
	20.5.6 DMA-Controlled Data Transfer
	20.5.7 Data Flow Control in GP-SPI2 Master and Slave Modes
	20.5.8 GP-SPI2 Works as a Master
	20.5.9 GP-SPI2 Works as a Slave

	20.6 CS Setup Time and Hold Time Control
	20.7 GP-SPI2 Clock Control
	20.7.1 Clock Phase and Polarity
	20.7.2 Clock Control in Master Mode
	20.7.3 Clock Control in Slave Mode

	20.8 GP-SPI2 Timing Compensation
	20.9 Interrupts
	20.10 Register Summary
	20.11 Registers

	21 I2C Master Controller (I2C)
	21.1 Overview
	21.2 Features
	21.3 I2C Architecture
	21.4 Functional Description
	21.4.1 Clock Configuration
	21.4.2 SCL and SDA Noise Filtering
	21.4.3 Generating SCL Pulses in Idle State
	21.4.4 Synchronization
	21.4.5 Open-Drain Output
	21.4.6 Timing Parameter Configuration
	21.4.7 Timeout Control
	21.4.8 Command Configuration
	21.4.9 TX/RX RAM Data Storage
	21.4.10 Data Conversion
	21.4.11 Addressing Mode
	21.4.12 Starting of the I2C Master Controller

	21.5 Programming Example
	21.5.1 I2C master Writes to I2C slave with a 7-bit Address in One Command Sequence
	21.5.2 I2C master Writes to I2C slave with a 10-bit Address in One Command Sequence
	21.5.3 I2C master Writes to I2C slave with Two 7-bit Addresses in One Command Sequence
	21.5.4 I2C master Writes to I2C slave with a 7-bit Address in Multiple Command Sequences
	21.5.5 I2C master Reads I2C slave with a 7-bit Address in One Command Sequence
	21.5.6 I2C master Reads I2C slave with a 10-bit Address in One Command Sequence
	21.5.7 I2C master Reads I2C slave with Two 7-bit Addresses in One Command Sequence
	21.5.8 I2C master Reads I2C slave with a 7-bit Address in Multiple Command Sequences

	21.6 Interrupts
	21.7 Register Summary
	21.8 Registers

	22 LED PWM Controller (LEDC)
	22.1 Overview
	22.2 Features
	22.3 Functional Description
	22.3.1 Architecture
	22.3.2 Timers
	22.3.3 PWM Generators
	22.3.4 Duty Cycle Fading
	22.3.5 Interrupts

	22.4 Register Summary
	22.5 Registers

	23 On-Chip Sensor and Analog Signal Processing
	23.1 Overview
	23.2 SAR ADC
	23.2.1 Overview
	23.2.2 Features
	23.2.3 Functional Description

	23.3 Temperature Sensor
	23.3.1 Overview
	23.3.2 Features
	23.3.3 Functional Description

	23.4 Interrupts
	23.5 Register Summary
	23.6 Register

	24 Related Documentation and Resources
	Glossary
	Abbreviations for Peripherals
	Abbreviations for Registers

	Revision History

